EconPapers    
Economics at your fingertips  
 

Prevention of Barite Sag in Oil-Based Drilling Fluids Using a Mixture of Barite and Ilmenite as Weighting Material

Abdelmjeed Mohamed, Salem Basfar, Salaheldin Elkatatny and Abdulaziz Al-Majed
Additional contact information
Abdelmjeed Mohamed: College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
Salem Basfar: College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
Salaheldin Elkatatny: College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
Abdulaziz Al-Majed: College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia

Sustainability, 2019, vol. 11, issue 20, 1-14

Abstract: Drilling high-pressure high-temperature (HPHT) wells requires a special fluid formulation that is capable of controlling the high pressure and is stable under the high downhole temperature. Barite-weighted fluids are common for such purpose because of the good properties of barite, its low cost, and its availability. However, solids settlement is a major problem encountered with this type of fluids, especially at elevated downhole temperatures. This phenomenon is known as barite sag, and it is encountered in vertical and directional wells under static or dynamic conditions leading to serious well control issues. This study aims to evaluate the use of barite-ilmenite mixture as a weighting agent to prevent solids sag in oil-based muds at elevated temperatures. Sag test was conducted under static conditions (vertical and inclined) at 350 °F and under dynamic conditions at 120 °F to determine the optimum ilmenite concentration. Afterward, a complete evaluation of the drilling fluid was performed by monitoring density, electrical stability, rheological and viscoelastic properties, and filtration performance to study the impact of adding ilmenite on drilling fluid performance. The results of this study showed that adding ilmenite reduces sag tendency, and only 40 wt.% ilmenite (from the total weighting material) was adequate to eliminate barite sag under both static and dynamic conditions with a sag factor of around 0.51. Adding ilmenite enhanced the rheological and viscoelastic properties and the suspension of solid particles in the drilling fluid, which confirmed sag test results. Adding ilmenite slightly increased the density of the drilling fluid, with a slight decrease in the electrical stability within the acceptable range of field applications. Moreover, a minor improvement in the filtration performance of the drilling fluid and filter cake sealing properties was observed with the combined weighting agent. The findings of this study provide a practical solution to the barite sag issue in oil-based fluids using a combination of barite and ilmenite powder as a weighting agent to drill HPHT oil and gas wells safely and efficiently with such type of fluids.

Keywords: weighting materials; barite; ilmenite; barite sag; oil-based drilling fluids; HPHT wells (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/20/5617/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/20/5617/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:20:p:5617-:d:275749

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5617-:d:275749