Analyzing Atrium Volume Designs for Hot and Humid Climates
Reihaneh Aram and
Halil Zafer Alibaba
Additional contact information
Reihaneh Aram: Faculty of Architecture, Department of Architecture, Eastern Mediterranean University, 99628 Gazimagusa, Northern Cyprus, Mersin 10, Turkey
Halil Zafer Alibaba: Faculty of Architecture, Department of Architecture, Eastern Mediterranean University, 99628 Gazimagusa, Northern Cyprus, Mersin 10, Turkey
Sustainability, 2019, vol. 11, issue 22, 1-40
Abstract:
The objective of this research was to determine the proper thermal comfort in an atrium design for single-floor, medium-rise, and high-rise buildings based on different proportions, placements, window opening ratios, and internal condition systems. EDSL Tas software was used for the dynamic thermal simulation software models, and all were analyzed based on ASHRAE 55, ISO 7730, and EN 15251 standards to determine which dynamic thermal simulation models had thermal comfort in a hot and humid climate throughout the year. This research found that for naturally conditioned single-floor and medium-rise buildings, when the atrium proportion was 1/2 of the office proportion at the southeast and center atrium location, respectively, had maximum user satisfaction. When the building’s internal spaces were mechanically conditioned with a 1/3 and 1/4 atrium proportion of the office proportion in single-floor and medium-rise buildings, respectively, thermal comfort was acceptable, especially when the atrium was located in the center for single-floor and in the northeast for medium-rise buildings. However, the naturally conditioned high-rise building with a north-east atrium that was 1/4 of the office proportion and a mechanically conditioned high-rise with a center atrium 1/3 of the office proportion had the minimum dissatisfaction throughout the year.
Keywords: atrium volume; atrium placement; naturally conditioned building; mechanically conditioned building; hot and humid climate (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/11/22/6213/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/22/6213/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:22:p:6213-:d:284228
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().