EconPapers    
Economics at your fingertips  
 

Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case

Julio Barzola-Monteses, Mónica Mite-León, Mayken Espinoza-Andaluz, Juan Gómez-Romero and Waldo Fajardo
Additional contact information
Julio Barzola-Monteses: Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, 090514 Guayaquil, Ecuador
Mónica Mite-León: Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, 090514 Guayaquil, Ecuador
Mayken Espinoza-Andaluz: Centro de Energías Renovables y Alternativas, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, 09-01-5863 Guayaquil, Ecuador
Juan Gómez-Romero: Department of Computer Science and Artificial Intelligence, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18071 Granada, Spain
Waldo Fajardo: Department of Computer Science and Artificial Intelligence, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18071 Granada, Spain

Sustainability, 2019, vol. 11, issue 23, 1-19

Abstract: Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0) 12 , which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers.

Keywords: hydroelectric power; production prediction; time series analysis; ARIMA; ARIMAX (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/23/6539/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/23/6539/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:23:p:6539-:d:288855

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6539-:d:288855