A Study on Multi-Objective Parametric Design Tool for Surround-Type Movable Shading Device
Ho-Jeong Kim,
Chang-Seok Yang and
Hyeun Jun Moon
Additional contact information
Ho-Jeong Kim: Department of Architecture, Dankook University, Yongin 16890, Korea
Chang-Seok Yang: Department of Architecture, Dankook University, Yongin 16890, Korea
Hyeun Jun Moon: Department of Architecture, Dankook University, Yongin 16890, Korea
Sustainability, 2019, vol. 11, issue 24, 1-24
Abstract:
This study presents a multi-objective parametric design tool for four-axis surround-type movable shading device using solar position tracking in Seoul, South Korea. In order to explore large numbers of possible forms of shades, generic algorithms are utilized with real-time simulation of the performative criteria such as solar radiation, daylight glare probability (DGP), and solar shielding rate on window surface. This study outlines a workflow using a multi-objective engine called Octopus that runs within Grasshopper 3D, a parametric design tool, in addition to environmental performance simulation plug-in Ladybug. The workflow utilizes a performance-based design tool, which allows the designer to explore, sort, and filter solutions, and visually compare alternative solutions in terms of energy saving and indoor daylight quality in order to determine the optimal form of shade changing its shape every one hour. The result of deriving and analyzing the optimal shade shape through the genetic algorithm proposed in this study is as follows: On the one hand, on the summer solstice, shade shapes with shielding areas of almost 100% should be derived to achieve the most effective reduction of the direct solar radiation. The proposed movable shading device reduced direct solar radiation by 52.40% and 57.20% in the south- and east-facing windows, respectively. On the other hand, in winter when solar heat gain is important, the absence of sunshade is optimal in terms of heating load. However, in order to improve the indoor light environment, it is confirmed that it is possible to derive a certain shape of sunshade according to the sun’s trajectory. On the winter solstice, the problem of glare arises from 10:00 to 15:00 in the south and 10:00 in the east. Therefore, the proposed four-axis movable shading device can be configured to have a minimum protrusion length satisfying DGP less than 0.35 in winter.
Keywords: shading system; surround-type movable shade; genetic algorithm; solar radiation; daylight glare probability (DGP); solar shielding rate (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/11/24/7096/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/24/7096/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:24:p:7096-:d:296669
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().