EconPapers    
Economics at your fingertips  
 

A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network

Jianzhou Wang, Chunying Wu and Tong Niu
Additional contact information
Jianzhou Wang: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
Chunying Wu: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
Tong Niu: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China

Sustainability, 2019, vol. 11, issue 2, 1-34

Abstract: Given the rapid development and wide application of wind energy, reliable and stable wind speed forecasting is of great significance in keeping the stability and security of wind power systems. However, accurate wind speed forecasting remains a great challenge due to its inherent randomness and intermittency. Most previous researches merely devote to improving the forecasting accuracy or stability while ignoring the equal significance of improving the two aspects in application. Therefore, this paper proposes a novel hybrid forecasting system containing the modules of a modified data preprocessing, multi-objective optimization, forecasting, and evaluation to achieve the wind speed forecasting with high precision and stability. The modified data preprocessing method can obtain a smoother input by decomposing and reconstructing the original wind speed series in the module of data preprocessing. Further, echo state network optimized by a multi-objective optimization algorithm is developed as a predictor in the forecasting module. Finally, eight datasets with different features are used to validate the performance of the proposed system using the evaluation module. The mean absolute percentage errors of the proposed system are 3.1490%, 3.0051%, 3.0618%, and 2.6180% in spring, summer, autumn, and winter, respectively. Moreover, the interval prediction is complemented to quantitatively characterize the uncertainty as developing intervals, and the mean average width is below 0.2 at the 95% confidence level. The results demonstrate the proposed forecasting system outperforms other comparative models considered from the forecasting accuracy and stability, which has great potential in the application of wind power systems.

Keywords: wind speed forecasting; echo state network; forecasting accuracy; stability and practicality; hybrid forecasting system; interval prediction (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/2071-1050/11/2/526/pdf (application/pdf)
https://www.mdpi.com/2071-1050/11/2/526/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:11:y:2019:i:2:p:526-:d:199264

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:526-:d:199264