EconPapers    
Economics at your fingertips  
 

Global Marine Fishing across Space and Time

Andrew K. Carlson, William W. Taylor, Daniel I. Rubenstein, Simon A. Levin and Jianguo Liu
Additional contact information
Andrew K. Carlson: Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, 115 Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48824, USA
William W. Taylor: Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, 115 Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48824, USA
Daniel I. Rubenstein: Princeton Environmental Institute and Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
Simon A. Levin: Princeton Environmental Institute and Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
Jianguo Liu: Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, 115 Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48824, USA

Sustainability, 2020, vol. 12, issue 11, 1-16

Abstract: Human health and livelihoods are threatened by declining marine fisheries catches, causing substantial interest in the sources and dynamics of fishing. Catch analyses in individual exclusive economic zones (EEZs) and the high seas are abundant, and research across multiple EEZs is growing. However, no previous studies have systematically compared catches, intranational versus international fish flows, and fishing nations within all of the world’s EEZs and across adjacent and distant EEZs and the high seas to inform “metacoupled” fisheries management. We use the metacoupling framework—a new approach for evaluating human–nature interactions within and across adjacent and distant systems (metacouplings)—to illustrate how fisheries catches were locally, regionally, and globally interconnected in 1950–2014, totaling 5.8 billion metric tons and increasing by 298% (tonnage) and 431% (monetary value) over this time period. Catches by nations in their own EEZs (largest in Peru) and adjacent EEZs (largest in Indonesia) constituted 86% of worldwide catches, growing in 1950–1996 but declining in 1997–2014. In contrast, catches in distant EEZs and the high seas—largest in Morocco, Mauritania, and Canada—peaked in 1973 and have since represented 9–21% of annual catches. Our 65-year, local–regional–global analysis illustrates how metacoupled fisheries governance—holistic management of multiscalar catches, flows, and tradeoffs within and among fisheries—can improve food and nutrition security, livelihood resilience, and biodiversity conservation across the world.

Keywords: fisheries; food security; metacoupling; telecoupling; sustainability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/11/4714/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/11/4714/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:11:p:4714-:d:369220

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4714-:d:369220