Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize
Subhan Danish,
Muhammad Zafar-ul-Hye,
Shah Fahad,
Shah Saud,
Martin Brtnicky,
Tereza Hammerschmiedt and
Rahul Datta
Additional contact information
Subhan Danish: Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University Multan, Punjab 60800, Pakistan
Muhammad Zafar-ul-Hye: Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University Multan, Punjab 60800, Pakistan
Shah Fahad: Hainan Key Laboratory for Sustaianble Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou Hainan 570228, China
Shah Saud: Department of Horticulture, Northeast Agriculture University, Harbin 150030, China
Martin Brtnicky: Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
Tereza Hammerschmiedt: Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
Rahul Datta: Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
Sustainability, 2020, vol. 12, issue 15, 1-17
Abstract:
The high consumption of water in industries, domestic areas and increasing earth temperature are major hurdles for the optimization of maize yield. Being the third most widely cultivated cereal crop, improvement in maize yield is a big challenge under the limited availability of irrigation. As the water requirement for maize cultivation is high, it is time to introduce technologies that can mitigate drought stress and are environmentally friendly. The inoculation of rhizobacteria with ‘1-aminocyclopropane-1-carboxylate deaminase’ (ACCD) can play an imperative role in that regard by decreasing stress ethylene in plants. Biochar (BC) can also alleviate drought stress. Therefore, a field study was conducted, to examine the single and combined application of drought-tolerant plant-growth-promoting rhizobacteria (PGPRs) Achromobacter xylosoxidans and Enterobacter cloacae , with 15 Mg ha −1 of timber waste biochar (TWBC) at normal irrigation = 16 irrigations, mild drought = 14 irrigations and severe drought = 12 irrigation for maize cultivation. A significant improvement in shoot dry weight (28%), 1000-grains weight (19%), grain yield (27%), concentrations of N (43%), P (92%) and K (71%) in grains, rate of photosynthesis (33%), transpiration rate (55%), stomatal conductance (104%), chlorophyll A (33%), chlorophyll B (62%) and total chlorophyll (45%) of maize was noted under drought stress where E. cloacae + TWBC was applied. Likewise, the application of A. xylosoxidans + TWBC also significantly enhanced the plant height (24%) and cob length (9%) of maize under drought stress. In conclusion, E. cloacae is more effective than A. xylosoxidans , with 15 Mg ha −1 TWBC to increase maize yield under drought stress, due to the potential of higher ‘1-aminocyclopropane-1-carboxylate’ (ACC)-deaminase synthesis, better nutrient solubilization and indole acetic acid (IAA) production.
Keywords: ACC deaminase; biochar; gas exchange attributes; maize; nutrients; yield (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/15/6286/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/15/6286/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:15:p:6286-:d:394509
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().