EconPapers    
Economics at your fingertips  
 

Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China

Yang Wang, Shuai Zhang and Xueer Chang
Additional contact information
Yang Wang: College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
Shuai Zhang: College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
Xueer Chang: College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China

Sustainability, 2020, vol. 12, issue 18, 1-17

Abstract: Evapotranspiration (ET) is an important part of both water balance and energy balance. Accordingly, the estimation of ET plays a key role in research related to regional water resources and energy balance. Using the largest inland freshwater lake in China—Bosten Lake Basin—as a target area, this study employs the SEBAL model combined with actual surface ET from the 2013 MODIS ET data to estimate ET in the Bosten Lake Basin from a time and space perspective. The findings include the following: (1) Evapotranspiration in the Bosten Lake Basin shows a unimodal distribution in terms of time distribution, with the highest ET occurring in July and August. In terms of spatial distribution, the overall trend is more apparent in the northwest portion of the basin than the southeast portion, as there are more mountains in the northwest as well as fewer desert areas. (2) Grassland and unused land were the main types of land cover, and ET exhibited a clear relationship to vegetation coverage and water supply. The distribution of land use types from northwest to southeast ET show a significant downward trend. (3) During the growing season, the average daily ET level of land use/cover type was the greatest over water bodies (5.61 mm/d), followed by grassland (4.6 mm/d) and snow/ice (4.29 mm/d), with unused land giving the smallest amounts of ET.

Keywords: remote sensing; SEBAL; evapotranspiration; Bosten Lake Basin (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/18/7293/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/18/7293/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:18:p:7293-:d:409515

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7293-:d:409515