EconPapers    
Economics at your fingertips  
 

Effects of Super-Absorbent Polymer on Soil Remediation and Crop Growth in Arid and Semi-Arid Areas

Fang Yang, Rui Cen, Weiying Feng, Jing Liu, Zhongyi Qu and Qingfeng Miao
Additional contact information
Fang Yang: State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Rui Cen: Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100089, China
Weiying Feng: School of Space and Environment, Beihang University, Beijing 100191, China
Jing Liu: Environment Research Institute, Shandong University, Qingdao 266237, China
Zhongyi Qu: College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Qingfeng Miao: College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

Sustainability, 2020, vol. 12, issue 18, 1-13

Abstract: The water-retaining and yield-increasing capacity of super-absorbent polymer (SAP) are essential for soil remediation in arid and semi-arid areas. Therefore, it is of great significance to investigate the influencing factors and mechanisms of SAP effects on soil environments and crop growth for the precise management of agricultural water-saving irrigation. In this study, we adopted SAP as a soil conditioner and monitored changes in soil temperature, photosynthetic rate, leaf transpiration rate, chlorophyll, crop growth indexes (plant height, stem diameter, leaf area index, dry matter accumulation), and yield under different SAP doses during the growth stage of maize, on the basis of which the improvement mechanism of SAP in arid and semi-arid soil was analyzed. The results demonstrated the following: (1) 45 kg/hm 2 of SAP application could increase the temperature of the soil layer, effectively reduce the diurnal temperature variation of the soil surface, and promote the stable growth of maize; (2) when different SAP doses were applied, the leaf surface temperature of maize increased by 0.95 °C on average. In particular, when 135 kg/hm 2 of SAP was applied, the leaf surface temperature increased by 1.55 °C; (3) SAP could promote the photosynthetic rate of maize. In addition, the plant height, leaf area index, and dry matter accumulation of maize gradually increased with an increasing amount of SAP; (4) the application of SAP not only increased the grain row number, ear row number, and average 100-seed weight, but also increased the crop yield by nearly 6%. The application of SAP demonstrated a comprehensive utility (redistribution of soil water and temperature, synergy between SAPs and plants), which suggests that the most basic goal, to ensure socio-economic and ecological sustainability in dryland systems, was obtained.

Keywords: SAP; soil infiltration rate; soil temperature; photosynthetic rate; semi-arid area; maize (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/18/7825/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/18/7825/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:18:p:7825-:d:417318

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7825-:d:417318