EconPapers    
Economics at your fingertips  
 

LSTM-Based Deep Learning Model for Predicting Individual Mobility Traces of Short-Term Foreign Tourists

Alessandro Crivellari and Euro Beinat
Additional contact information
Alessandro Crivellari: Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria
Euro Beinat: Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria

Sustainability, 2020, vol. 12, issue 1, 1-18

Abstract: The increasing availability of trajectory recordings has led to the mining of a massive amount of historical track data, allowing for a better understanding of travel behaviors by revealing meaningful motion patterns. In the context of human mobility analysis, the problem of motion prediction assumes a central role and is beneficial for a wide range of applications, including for touristic purposes, such as personalized services or targeted recommendations, and sustainability studies related to crowd management and resource redistribution. This paper tackles a particular case of the trajectory prediction problem, focusing on large-scale mobility traces of short-term foreign tourists. These sparse trajectories, short and non-repetitive, lack spatial and temporal regularity, making prediction analysis based on individual historical motion data unreliable. To face this issue, we hereby propose a deep learning-based approach, taking into account the collective mobility of tourists over the territory. The underlying semantics of motion patterns are captured by means of a long short-term memory (LSTM) neural network model trained on pre-processed location sequences, aiming to predict the next visited place in the trajectory. We tested the methodology on a real-world big dataset, demonstrating its higher feasibility with respect to traditional approaches.

Keywords: deep learning; LSTM; neural networks; location prediction; trajectories; smart tourism (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/1/349/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/1/349/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:1:p:349-:d:304175

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:349-:d:304175