Sustainable Soil-Compacted Blocks Containing Blast Furnace Slag (BFS) Activated with Olive Stone BIOMASS Ash (OBA)
Jordi Payá,
José Monzó,
Josefa Roselló,
María Victoria Borrachero,
Alba Font and
Lourdes Soriano
Additional contact information
Jordi Payá: Grupo de Investigación en Química de los Materiales (GIQUIMA), Instituto de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València (UPV), 46022 Valencia, Spain
José Monzó: Grupo de Investigación en Química de los Materiales (GIQUIMA), Instituto de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València (UPV), 46022 Valencia, Spain
Josefa Roselló: Departamento de Ecosistemas Agroforestales, Universitat Politècnica de Valéncia (UPV), 46022 Valencia, Spain
María Victoria Borrachero: Grupo de Investigación en Química de los Materiales (GIQUIMA), Instituto de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València (UPV), 46022 Valencia, Spain
Alba Font: Grupo de Investigación en Química de los Materiales (GIQUIMA), Instituto de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València (UPV), 46022 Valencia, Spain
Lourdes Soriano: Grupo de Investigación en Química de los Materiales (GIQUIMA), Instituto de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València (UPV), 46022 Valencia, Spain
Sustainability, 2020, vol. 12, issue 23, 1-14
Abstract:
Soil stabilization using cementing materials is a well-known procedure for earth-based building blocks preparation. For the selected binding materials, innovation usually focuses on low carbon systems, many of which are based on alkaline activation. In the present paper, blast furnace slag (BFS) is used as a mineral precursor, and the innovative alkali activator was olive stone biomass ash (OBA). This means that the most important component in CO 2 emissions terms, which is the alkali activator, has been replaced with a greener alternative: OBA. The OBA/BFS mixture was used to prepare compacted dolomitic soil blocks. These specimens were mechanically characterized by compression, and water strength coefficient and water absorption were assessed. The microstructure of blocks and the formation of cementing hydrates were analyzed by field emission scanning electron microscopy and thermogravimetry, respectively. The final compressive strength of the 120-day cured blocks was 27.8 MPa. It was concluded that OBA is a sustainable alkali activator alternative for producing BFS-stabilized soil-compacted blocks: CO 2 emissions were 3.3 kgCO 2 /ton of stabilized soil, which is 96% less than that for ordinary Portland cement (OPC) stabilization.
Keywords: compressive strength; microstructure; water absorption; soil stabilization; FESEM; waterproofing behavior; thermogravimetry (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/23/9824/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/23/9824/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:23:p:9824-:d:450349
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().