Crash Risk Assessment for Heterogeneity Traffic and Different Vehicle-Following Patterns Using Microscopic Traffic Flow Data
Jiajun Shen and
Guangchuan Yang
Additional contact information
Jiajun Shen: School of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
Guangchuan Yang: Institute for Transportation Research and Education, North Carolina State University, Raleigh, NC 27606, USA
Sustainability, 2020, vol. 12, issue 23, 1-18
Abstract:
This paper investigates the impacts of heavy vehicles (HV) on speed variation and assesses the rear-end crash risk for four vehicle-following patterns in a heterogeneous traffic flow condition using three surrogate safety measures: speed variation, time-to-collision (TTC), and deceleration rate to avoid a crash (DRAC). A video-based data collection approach was employed to collect the speed of each individual vehicle and vehicle-following headway; a total of 3859 vehicle-following pairs were identified. Binary logistic regression modeling was employed to assess the impacts of HV percentage on crash risk. TTCs and DRACs were calculated based on the collected traffic flow data. Analytical models were developed to estimate the minimum safe vehicle-following headways for the four vehicle-following patterns. Field data revealed that the variation of speed first increased with HV percentage and reached the maximum when HV percentage was at around 0.35; then, it displayed a decreasing trend with HV percentage. Binary logistic regression modeling results suggest that a high risk of rear-end collision is expected when HV percentage is between 0.19 and 0.5; while, when HV percentage is either below 0.19 or exceed 0.5, a low risk of rear-end collision is anticipated. Analytical modeling results show that the passenger car (PC)-HV vehicle-following pattern requires the largest minimum safe space headway, followed by HV-HV, PC-PC, and HV-PC vehicle-following patterns. Findings from this research present insights to transportation engineers regarding the development of crash mitigation strategies and have the potential to advance the design of real-time in-vehicle forward collision warnings to minimize the risk of rear-end crash.
Keywords: heterogeneity traffic; vehicle-following pattern; speed variation; crash risk assessment; minimum safe headway (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/23/9888/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/23/9888/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:23:p:9888-:d:451524
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().