EconPapers    
Economics at your fingertips  
 

Optimum Water and Fertilizer Management for Better Growth and Resource Use Efficiency of Rapeseed in Rainy and Drought Seasons

Jun Feng, Hafiz Athar Hussain, Saddam Hussain, Chao Shi, Linna Cholidah, Shengnan Men, Jianhong Ke and Longchang Wang
Additional contact information
Jun Feng: College of Agronomy and Biotechnology, Southwest University/Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
Hafiz Athar Hussain: College of Agronomy and Biotechnology, Southwest University/Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
Saddam Hussain: Department of Agronomy, University of Agriculture, Faisalabad 38040, Punjab, Pakistan
Chao Shi: College of Agronomy and Biotechnology, Southwest University/Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
Linna Cholidah: College of Agronomy and Biotechnology, Southwest University/Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
Shengnan Men: College of Agronomy and Biotechnology, Southwest University/Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
Jianhong Ke: Chongqing Academy of Agricultural Sciences, Chongqing 400064, China
Longchang Wang: College of Agronomy and Biotechnology, Southwest University/Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China

Sustainability, 2020, vol. 12, issue 2, 1-18

Abstract: Optimum water–fertilizer management in rainfed agriculture is an important factor in improving crop productivity and the ecological environment under fluctuating climate conditions, especially in Southwest China, where seasonal drought and waterlogging occur frequently. In order to investigate the effects of different cultivation technologies on growth and the water and fertilizer use efficiency of rapeseed ( Brassica napus L.), a two-year field study was conducted in rainy (2016–2017) and drought (2017–2018) seasons which included three cultivation patterns: (1) conventional flat planting (FP); (2) straw mulching (SM); (3) ridge-furrow rainfall harvesting system (RF), and three fertilization patterns: (1) conventional fertilization (CF); (2) reduced slow-release fertilizer (SR); and (3) no fertilizer as a control treatment. The results indicated that the yield and its composition values were lower in the rainy year than in the seasonal dry year. The single water-saving technology had no significant effect on yield increase when seasonal drought occurred. The two technologies (SM + SR and RF + SR) improved the height, leaf SPAD value and dry matter of the rapeseed and adjusted the root–shoot ratio under two different climate conditions. In the rainy season, these technologies reduced the loss of nutrients, while in the seasonal drought year, it increased the soil moisture. The SM + SR and RF + SR increased the yield of rapeseed by 7.71% and 29.93% and enhanced oil content by 4.64% and 7.91%, respectively, compared with the local cultivation pattern. Meanwhile, these treatments decreased the total water consumption during whole growth stages and promoted water use efficiency by 14.84% and 28.71%, respectively. The combination of SM + SR and RF + SR also increased the accumulation of N, P, and K and significantly promoted the utilization efficiency of fertilizer. In the future, the adverse effects of environmental factors could be relieved, and the goal of cost savings and increasing efficiency could be achieved by adopting the optimal cultivation technologies in rapeseed production of Southwest China.

Keywords: climate condition; straw mulching; ridge-furrow mulching; slow-release fertilizer; water and fertilizer utilization; rapeseed ( Brassica napus L.) (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/2/703/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/2/703/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:2:p:703-:d:310280

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:703-:d:310280