Path Analysis of Beijing’s Dematerialization Development Based on System Dynamics
Tiejun Dai and
Shuo Shan
Additional contact information
Tiejun Dai: College of Economics & Management, Beijing University of Technology, Beijing 100124, China
Shuo Shan: College of Economics & Management, Beijing University of Technology, Beijing 100124, China
Sustainability, 2020, vol. 12, issue 3, 1-23
Abstract:
Dematerialization is a phenomenon in which resource consumption and pollutant discharge decrease during economic development. In order to explore the optimal paths of Beijing’s dematerialization, this study combines material flow analysis method and the Tapio decoupling model to construct a city dematerialization evaluation model, and establishes a system dynamics model to simulate the comprehensive dematerialization levels and the dematerialization levels of eight materials under four scenarios. The results show that the key factors affecting the dematerialization levels of resource and discharge end were non-metals consumption and CO 2 emissions respectively. During 2016–2030, Beijing would achieve weak decoupling state under four scenarios, but the degree of dematerialization would be different. For the comprehensive dematerialization level, during 2017–2024, an industrial restructuring (IR) scenario, which would strengthen R&D investment and optimize the industrial structure, would be the optimal choice. During 2025–2030, an environmental governance (EG) scenario, which means increasing the investment in pollution control, would bring about the best dematerialization level. There would be differences in the optimal dematerialization paths for eight materials. For example, economic sustainable degrowth (ESD) and EG scenarios would be the optimal paths for dematerialization of atmospheric pollutants in the period 2017–2021 and 2022–2030, respectively.
Keywords: dematerialization; material flow analysis; decoupling; system dynamics; resources; environment; Beijing (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/3/829/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/3/829/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:3:p:829-:d:312077
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().