EconPapers    
Economics at your fingertips  
 

In-Situ Yeast Fermentation to Enhance Bioconversion of Coconut Endosperm Waste into Larval Biomass of Hermetia illucens: Statistical Augmentation of Larval Lipid Content

Chung Yiin Wong, Muhammad Naeim Mohd Aris, Hanita Daud, Man Kee Lam, Ching Seong Yong, Hadura Abu Hasan, Siewhui Chong, Pau Loke Show, Oetami Dwi Hajoeningtijas, Yeek Chia Ho, Pei Sean Goh, Husnul Kausarian, Guan-Ting Pan and Jun Wei Lim
Additional contact information
Chung Yiin Wong: Department of Fundamental and Applied Sciences, Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
Muhammad Naeim Mohd Aris: Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
Hanita Daud: Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
Man Kee Lam: Department of Chemical Engineering, Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
Ching Seong Yong: EnviProtein Sdn Bhd, 1327, Jalan Padang Benggali, Butterworth 13050, Penang, Malaysia
Hadura Abu Hasan: School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
Siewhui Chong: Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Broga Road, Semenyih 43500, Malaysia
Pau Loke Show: Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Broga Road, Semenyih 43500, Malaysia
Oetami Dwi Hajoeningtijas: Department of Agroecology, Agriculture Faculty, Universitas Muhammadiyah Purwokerto, Raya Dukuhwaluh Street PO BOX 202, Purwokerto 53182, Central of Java, Indonesia
Yeek Chia Ho: Department of Civil and Environmental Engineering, Centre for Urban and Resources, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
Pei Sean Goh: Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
Husnul Kausarian: Department of Geological Engineering, Universitas Islam Riau, Pekanbaru 62761674834, Riau 28284, Indonesia
Guan-Ting Pan: Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
Jun Wei Lim: Department of Fundamental and Applied Sciences, Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia

Sustainability, 2020, vol. 12, issue 4, 1-10

Abstract: The aim of this study was to spur the lipid accumulation by larvae of Hermetia illucens or black soldier fly (BSFL) via feeding with yeast fermented medium. The Saccharomyces cerevisiae , a single cell yeast, was introduced at different concentrations (0.02, 0.1, 0.5, 1.0, 2.5 wt %) to execute an in-situ fermentation on coconut endosperm waste. The rearing of BSFL was started simultaneously and the rearing was stopped once the BSFL reached the fifth instar. With the increasing of yeast concentration, the rearing duration of BSFL was shortened from 15.5 to 13.5 days. Moreover, it was found that at 0.5 to 1.0 wt % yeast concentration, the lipid yield and lipid productivity of BSFL were statistically enhanced to their highest peaks, namely, at 49.4% and 0.53 g/day, respectively. With regard to biodiesel composition, BSFL-derived biodiesel contained mainly C12:0, C14:0, C16:0 and C18:1. The higher amount of saturated fatty acids could strengthen the oxidative stability biodiesel produced as compared with non-edible oils or microalgal lipid. At last, the addition of yeast was also found to improve the waste reduction index of coconut endosperm waste (CEW) from 0.31 to 0.40 g/day, heralding the capability of BSFL to valorize organic waste via bioconversion into its biomass to serve as a feedstock for biodiesel production.

Keywords: black soldier fly; lipid; biodiesel; yeast; fermentation; organic waste (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/4/1558/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/4/1558/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:4:p:1558-:d:322640

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1558-:d:322640