Intelligent PV Panels Fault Diagnosis Method Based on NARX Network and Linguistic Fuzzy Rule-Based Systems
Sufyan Samara and
Emad Natsheh
Additional contact information
Sufyan Samara: Department of Computer Engineering, An-Najah National University, PO Box 7, Nablus, Palestine
Emad Natsheh: Department of Computer Engineering, An-Najah National University, PO Box 7, Nablus, Palestine
Sustainability, 2020, vol. 12, issue 5, 1-20
Abstract:
The expanding use of photovoltaic (PV) systems as an alternative green source for electricity presents many challenges, one of which is the timely diagnosis of faults to maintain the quality and high productivity of such systems. In recent years, various studies have been conducted on the fault diagnosis of PV systems. However, very few instances of fault diagnostic techniques could be implemented on integrated circuits, and these techniques require costly and complex hardware. This work presents a novel and effective, yet small and implementable, fault diagnosis algorithm based on an artificial intelligent nonlinear autoregressive exogenous (NARX) neural network and Sugeno fuzzy inference. The algorithm uses Sugeno fuzzy inference to isolate and classify faults that may occur in a PV system. The fuzzy inference requires the actual sensed PV system output power, the predicted PV system output power, and the sensed surrounding conditions. An artificial intelligent NARX-based neural network is used to obtain the predicted PV system output power. The actual output power of the PV system and the surrounding conditions are obtained in real-time using sensors. The algorithm is proven to be implementable on a low-cost microcontroller. The obtained results indicate that the fault diagnosis algorithm can detect multiple faults such as open and short circuit degradation, faulty maximum power point tracking (MPPT), and conditions of partial shading (PS) that may affect the PV system. Moreover, radiation and temperature, among other non-linear associations of patterns between predictors, can be captured by the proposed algorithm to determine the accurate point of the maximum power for the PV system.
Keywords: renewable energy; modelling; photovoltaic system; fault detection; artificial neural network; time series prediction; fuzzy logic systems; low-cost microcontroller (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/5/2011/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/5/2011/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:5:p:2011-:d:329054
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().