EconPapers    
Economics at your fingertips  
 

Prevention of Barite Sag in Water-Based Drilling Fluids by A Urea-Based Additive for Drilling Deep Formations

Abdelmjeed Mohamed, Saad Al-Afnan, Salaheldin Elkatatny and Ibnelwaleed Hussein
Additional contact information
Abdelmjeed Mohamed: College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
Saad Al-Afnan: College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
Salaheldin Elkatatny: College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
Ibnelwaleed Hussein: Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar

Sustainability, 2020, vol. 12, issue 7, 1-19

Abstract: Barite sag is a challenging phenomenon encountered in deep drilling with barite-weighted fluids and associated with fluid stability. It can take place in vertical and directional wells, whether in dynamic or static conditions. In this study, an anti-sagging urea-based additive was evaluated to enhance fluid stability and prevent solids sag in water-based fluids to be used in drilling, completion, and workover operations. A barite-weighted drilling fluid, with a density of 15 ppg, was used with the main drilling fluid additives. The ratio of the urea-based additive was varied in the range 0.25–3.0 vol.% of the total base fluid. The impact of this anti-sagging agent on the sag tendency was evaluated at 250 °F using vertical and inclined sag tests. The optimum concentration of the anti-sagging agent was determined for both vertical and inclined wells. The effect of the urea-additive on the drilling fluid rheology was investigated at low and high temperatures (80 °F and 250 °F). Furthermore, the impact of the urea-additive on the filtration performance of the drilling fluid was studied at 250 °F. Adding the urea-additive to the drilling fluid improved the stability of the drilling fluid, as indicated by a reduction in the sag factor. The optimum concentration of this additive was found to be 0.5–1.0 vol.% of the base fluid. This concentration was enough to prevent barite sag in both vertical and inclined conditions at 250 °F, with a sag factor of around 0.5. For the optimum concentration, the yield point and gel strength (after 10 s) were improved by around 50% and 45%, respectively, while both the plastic viscosity and gel strength (after 10 min) were maintained at the desired levels. Moreover, the anti-sagging agent has no impact on drilling fluid density, pH, or filtration performance.

Keywords: barite sag; water-based drilling fluid; anti-sagging agent; urea-based additive (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/7/2719/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/7/2719/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:7:p:2719-:d:338947

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2719-:d:338947