Parametric Assessment of Trend Test Power in a Changing Environment
Andrea Gioia,
Maria Francesca Bruno,
Vincenzo Totaro and
Vito Iacobellis
Additional contact information
Andrea Gioia: Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, 70125 Bari, Italy
Maria Francesca Bruno: Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, 70125 Bari, Italy
Vincenzo Totaro: Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, 70125 Bari, Italy
Vito Iacobellis: Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, 70125 Bari, Italy
Sustainability, 2020, vol. 12, issue 9, 1-18
Abstract:
In the context of climate and environmental change assessment, the use of probabilistic models in which the parameters of a given distribution may vary in accordance with time has reinforced the need for appropriate procedures to recognize the “statistical significance” of trends in data series arising from stochastic processes. This paper introduces a parametric methodology, which exploits a measure based on the Akaike Information Criterion (AIC Δ ), and a Rescaled version of the Generalized Extreme Value distribution, in which a linear deterministic trend in the position parameter is accounted for. A Monte Carlo experiment was set up with the generation of nonstationary synthetic series characterized by different sample lengths and covering a wide range of the shape and scale parameters. The performances of statistical tests based on the parametric AIC Δ and the non-parametric Mann-Kendall measures were evaluated and compared with reference to observed ranges of annual maxima of precipitation, peak flow, and wind speed. Results allow for sensitivity analysis of the test power and show a strong dependence on the trend coefficient and the L-Coefficient of Variation of the parent distribution from the upper-bounded to the heavy-tailed special cases. An analysis of the sample variability of the position parameter is also presented, based on the same generation sets.
Keywords: statistical test power; trend detection test; model selection criteria; nonstationary probabilistic modeling; climate change; environment change (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/9/3889/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/9/3889/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:9:p:3889-:d:356042
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().