Transit-Based Evacuation for Urban Rail Transit Line Emergency
Bowen Hou,
Yang Cao,
Dongye Lv and
Shuzhi Zhao
Additional contact information
Bowen Hou: College of Transportation, Jilin University, Changchun 130022, China
Yang Cao: College of Transportation, Jilin University, Changchun 130022, China
Dongye Lv: Jilin Provincial Communications Science Research Institute, Changchun 130012, China
Shuzhi Zhao: College of Transportation, Jilin University, Changchun 130022, China
Sustainability, 2020, vol. 12, issue 9, 1-18
Abstract:
Urban rail systems are the backbone of urban transit networks and are characterized by large passenger volumes, high speeds, punctuality, and low environmental impacts. However, unforeseen events such as rail transit line emergencies can lead to unexpected costs and delays. As a means of disruption management, we divide the decision support system for urban rail transit line emergency situations into two stages—transit-based evacuation and bus bridging management. This paper focuses on the transit-based evacuation under emergency scenarios on a single rail line. The model determines the vehicles and routes within traditional transit systems required to evacuate stranded passengers within a given time window. In addition, the proposed method ensures the reliability of traditional transit systems by considering the operating fleet and reserve fleet in the traditional transit systems. Therefore, the proposed optimization model is established with the objective of maximizing the total number of stranded passengers transferred within the given time window and headway constraint. Herein, we present the optimization model and solution method, and the proposed method is validated. The effectiveness of the proposed control method is evaluated in the Changchun urban transit network. By analyzing stranded passengers at stations under different numbers of vehicles and time periods, the results show that the proposed model can significantly provide routing arrangements to maximize the number of passengers evacuated from stations. The results are useful in the development of emergency evacuation plans to prevent secondary accidents and evacuate stranded passengers during a rail transit line emergency.
Keywords: urban rail transit line emergency; transit-based evacuation model; evacuation time window; reserve fleet in transit systems (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/9/3919/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/9/3919/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:9:p:3919-:d:356488
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().