EconPapers    
Economics at your fingertips  
 

Power Grid Integration and Use-Case Study of Acid-Base Flow Battery Technology

Jesús Muñoz-Cruzado-Alba, Rossano Musca, Javier Ballestín-Fuertes, José F. Sanz-Osorio, David Miguel Rivas-Ascaso, Michael P. Jones, Angelo Catania and Emil Goosen
Additional contact information
Jesús Muñoz-Cruzado-Alba: Fundación CIRCE, Parque Empresarial Dinamiza, Avenida Ranillas Edificio 3D, 1ª Planta, 50018 Zaragoza, Spain
Rossano Musca: Engineering Department, University of Palermo, Viale delle Scienze Ed. 9, 90128 Palermo, Italy
Javier Ballestín-Fuertes: Fundación CIRCE, Parque Empresarial Dinamiza, Avenida Ranillas Edificio 3D, 1ª Planta, 50018 Zaragoza, Spain
José F. Sanz-Osorio: Instituto Universitario de Investigación CIRCE, Universidad de Zaragoza, Edificio CIRCE, Campus Río Ebro, C/ Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain
David Miguel Rivas-Ascaso: Fundación CIRCE, Parque Empresarial Dinamiza, Avenida Ranillas Edificio 3D, 1ª Planta, 50018 Zaragoza, Spain
Michael P. Jones: Fundación CIRCE, Parque Empresarial Dinamiza, Avenida Ranillas Edificio 3D, 1ª Planta, 50018 Zaragoza, Spain
Angelo Catania: S.MED.E Pantelleria S.p.a., Viale Strasburgo 189, 90146 Palermo, Italy
Emil Goosen: AquaBattery B.V., Lijnbaan 3c, 2352 CK Leiderdorp, The Netherlands

Sustainability, 2021, vol. 13, issue 11, 1-27

Abstract: There are many different types of energy storage systems (ESS) available and the functionality that they can provide is extensive. However, each of these solutions come with their own set of drawbacks. The acid-base flow battery (ABFB) technology aims to provide a route to a cheap, clean and safe ESS by means of providing a new kind of energy storage technology based on reversible dissociation of water via bipolar electrodialysis. First, the main characteristics of the ABFB technology are described briefly to highlight its main advantages and drawbacks and define the most-competitive use-case scenarios in which the technology could be applied, as well as analyze the particular characteristics which must be considered in the process of designing the power converter to be used for the interface with the electrical network. As a result, based on the use-cases defined, the ESS main specifications are going to be identified, pointing out the best power converter configuration alternatives. Finally, an application example is presented, showing an installation in the electrical network of Pantelleria (Italy) where a real pilot-scale prototype has been installed.

Keywords: energy storage systems; acid-base flow battery; power converters; power grid integration; distributed energy resources; power flow batteries; acid-base flow battery (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/11/6089/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/11/6089/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:11:p:6089-:d:564220

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6089-:d:564220