Junction Management for Connected and Automated Vehicles: Intersection or Roundabout?
Yuanyuan Wu and
Feng Zhu
Additional contact information
Yuanyuan Wu: School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
Feng Zhu: School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
Sustainability, 2021, vol. 13, issue 16, 1-18
Abstract:
The concept of signal-free management at road junctions is tailored for Connected and Automated Vehicles (CAVs), in which the conventional signal control is replaced by various right-of-way assignment policies. First-Come-First-Served (FCFS) is the most commonly used policy. In most proposed strategies, although the traffic signals are replaced, the organization of vehicle trajectory remains the same as that of traffic lights. As a naturally signal-free strategy, roundabout has not received enough attention. A key motivation of this study is to theoretically compare the performance of signalized intersection (I-Signal), intersection using FCFS policy (I-FCFS), roundabout using the typical major-minor priority pattern (R-MM), and roundabout adopting FCFS policy (R-FCFS) under pure CAVs environment. Queueing theory is applied to derive the theoretical formulas of the capacity and average delay of each strategy. M/G/1 model is used to model the three signal-free strategies, while M/M/1/setup model is used to capture the red-and-green light switch nature of signal control. The critical safety time gaps are the main variables and are assumed to be generally distributed in the theoretical derivation. Analytically, I-Signal has the largest capacity benefiting from the ability to separate conflict points in groups, but in some cases it will have higher delay. Among the other three signal-free strategies, R-FCFS has the highest capacity and the least average control delay, indicating that the optimization of signal-free management of CAVs based on roundabout setting is worthy of further study.
Keywords: connected and automated vehicles; junction management; comparative analysis; roundabout (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/16/9482/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/16/9482/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:16:p:9482-:d:620264
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().