EconPapers    
Economics at your fingertips  
 

Environmental Impact of Solar Home Systems in Sub-Saharan Africa

Fernando Antonanzas-Torres, Javier Antonanzas and Julio Blanco-Fernandez
Additional contact information
Fernando Antonanzas-Torres: Department of Mechanical Engineering, University of La Rioja, 26006 Logroño, Spain
Javier Antonanzas: Mechanical Engineering, Colorado State University, 430 University Ave, Fort Collins, CO 80523, USA
Julio Blanco-Fernandez: Department of Mechanical Engineering, University of La Rioja, 26006 Logroño, Spain

Sustainability, 2021, vol. 13, issue 17, 1-19

Abstract: Solar home systems (SHS) represent one of the most promising technologies for a rapid and independent electrification in those areas of Sub-Saharan Africa (SSA) without access to electricity. This study addressed the environmental impact of SHS in SSA through updated life cycle inventories and five impact categories: greenhouse gases (GHG) emissions, fossil fuels, metal and water depletion and human toxicity. Sixteen scenarios were considered, including manufacturing, transportation, recycling and user-related variables, such as the installation site, adequacy of SHS user operation and battery lifespan. The results showed that lead-acid batteries were the largest contributor to environmental impact among the SHS components, accounting for up to 36–76% of the environmental impact indicators. Apart from the components, user training for SHS operation, with the goal of maximizing usable energy and battery lifetime, proved to be critical to achieve improvements in the energy payback time and GHG emissions, which (under scenarios of high solar resources) can reach the range of 5.3–7.1 years and 0.14–0.18 kgCO 2 eq/kWh, respectively. In addition, SHS GHG emission factors were benchmarked with those of other electrification approaches, such as national grids, 100% PV and hybrid PV-diesel off-grid mini grids and off-grid diesel generators. SHS achieved GHG emission factor values equivalent to PV-based mini grids in most scenarios and was strikingly lower compared to SSA national grids and diesel generators.

Keywords: LCA; life cycle assessment; environmental impact; Sub-Sahara Africa; solar home system (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/17/9708/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/17/9708/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:17:p:9708-:d:625051

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9708-:d:625051