EconPapers    
Economics at your fingertips  
 

Performance Assessment on the Application of Artificial Intelligence to Sustainable Supply Chain Management in the Construction Material Industry

Kuang-Sheng Liu and Ming-Hung Lin
Additional contact information
Kuang-Sheng Liu: Department of Interior Design, Tung-Fang Design University, Kaohsiung 829003, Taiwan
Ming-Hung Lin: Graduate Institute of Cultural and Creative Design, Tung-Fang Design University, Kaohsiung 829003, Taiwan

Sustainability, 2021, vol. 13, issue 22, 1-15

Abstract: Along with global geopolitical complex, information network security issues and increased natural disasters, risk management should be well considered in the construction material industry to re-integrate and establish stiff and flexible supply chains in order to cope with emergencies in the future market. Taking the construction material industry in Taiwan as the research object, representative enterprises with artificial intelligence applied sustainable supply chain management are studied. With the Delphi method and data envelopment analysis, the public data of annual statistics reports of the enterprises are used for selecting the performance indicators of inputs and outputs. Empirical data analysis is also performed to provide reference for the improvement. The research results are summarized as follows. 1. Substituting various input/output index values into CCR and BCC models, the overall production efficiency and pure technical efficiency of enterprises are calculated; by dividing the two, the returns to scale of enterprises are acquired. 2. Critical factors in artificial intelligence applied sustainable supply chain management could be found out through sensitivity analysis. Using the rate of sensitivity change as the evaluation baseline, sensitive factors contain financial aspect, scale aspect, financial performance, and profit before tax. Finally, discussions are proposed according to the results, expecting to help domestic businesses in the construction material industry establish steady and flexible supply chains and present diversified procurement sources to reinforce the emergency defensive ability of the construction material industry.

Keywords: artificial intelligence; sustainable supply chain management; performance assessment; construction material industry (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/22/12767/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/22/12767/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:22:p:12767-:d:682229

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12767-:d:682229