EconPapers    
Economics at your fingertips  
 

Shared Automated Mobility with Demand-Side Cooperation: A Proof-of-Concept Microsimulation Study

Lei Zhu, Zhouqiao Zhao and Guoyuan Wu
Additional contact information
Lei Zhu: Department of System Engineering and Engineering Management, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
Zhouqiao Zhao: Center for Environmental Research & Technology, University of California at Riverside, Riverside, CA 92507, USA
Guoyuan Wu: Center for Environmental Research & Technology, University of California at Riverside, Riverside, CA 92507, USA

Sustainability, 2021, vol. 13, issue 5, 1-17

Abstract: Most existing shared automated mobility (SAM) services assume the door-to-door manner, i.e., the pickup and drop-off (PUDO) locations are the places requested by the customers (or demand-side). While some mobility services offer more affordable riding costs in exchange for a little walking effort from customers, their rationales and induced impacts (in terms of mobility and sustainability) from the system perspective are not clear. This study proposes a demand-side cooperative shared automated mobility (DC-SAM) service framework, aiming to fill this knowledge gap and to assess the mobility and sustainability impacts. The optimal ride matching problem is formulated and solved in an online manner through a micro-simulation model, Simulation of Urban Mobility (SUMO). The objective is to maximize the profit (considering both the revenue and cost) of the proposed SAM service, considering the constraints in seat capacities of shared automated vehicles (SAVs) and comfortable walking distance from the perspective of customers. A case study on a portion of a New York City (NYC) network with a pre-defined fleet size demonstrated the efficacy and promise of the proposed system. The results show that the proposed DC-SAM service can not only significantly reduce the SAV’s operating costs in terms of vehicle-miles traveled (VMT), vehicle-hours traveled (VHT), and vehicle energy consumption (VEC) by up to 53, 46 and 51%, respectively, but can also considerably improve the customer service by 30 and 56%, with regard to customer waiting time (CWT) and trip detour factor (TDF), compared to a heuristic service model. In addition, the demand-side cooperation strategy can bring about additional system-wide mobility and sustainability benefits in the range of 4–10%.

Keywords: demand-side cooperative shared automated mobility; microscopic traffic simulation; optimal ride matching; environmental sustainability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/5/2483/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/5/2483/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:5:p:2483-:d:505720

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2483-:d:505720