Machine Learning-Based Analysis of a Wind Turbine Manufacturing Operation: A Case Study
Antonio Lorenzo-Espejo,
Alejandro Escudero-Santana,
María-Luisa Muñoz-Díaz and
Alicia Robles-Velasco
Additional contact information
Antonio Lorenzo-Espejo: Departamento de Organización Industrial y Gestión de Empresas II, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Cm. de los Descubrimientos, s/n, 41092 Seville, Spain
Alejandro Escudero-Santana: Departamento de Organización Industrial y Gestión de Empresas II, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Cm. de los Descubrimientos, s/n, 41092 Seville, Spain
María-Luisa Muñoz-Díaz: Departamento de Organización Industrial y Gestión de Empresas II, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Cm. de los Descubrimientos, s/n, 41092 Seville, Spain
Alicia Robles-Velasco: Departamento de Organización Industrial y Gestión de Empresas II, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Cm. de los Descubrimientos, s/n, 41092 Seville, Spain
Sustainability, 2022, vol. 14, issue 13, 1-25
Abstract:
This study analyzes the lead time of the bending operation in the wind turbine tower manufacturing process. Since the operation involves a significant amount of employee interaction and the parts processed are heavy and voluminous, there is considerable variability in the recorded lead times. Therefore, a machine learning regression analysis has been applied to the bending process. Two machine learning algorithms have been used: a multivariate Linear Regression and the M5P method. The goal of the analysis is to gain a better understanding of the effect of several factors (technical, organizational, and experience-related) on the bending process times, and to attempt to predict these operation times as a way to increase the planning and controlling capacity of the plant. The inclusion of the experience-related variables serves as a basis for analyzing the impact of age and experience on the time-wise efficiency of workers. The proposed approach has been applied to the case of a Spanish wind turbine tower manufacturer, using data from the operation of its plant gathered between 2018 and 2021. The results show that the trained models have a moderate predictive power. Additionally, as shown by the output of the regression analysis, there are variables that would presumably have a significant impact on lead times that have been found to be non-factors, as well as some variables that generate an unexpected degree of variability.
Keywords: machine learning; regression; process control; wind power; lead time; bending; worker experience (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/13/7779/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/13/7779/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:13:p:7779-:d:848098
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().