EconPapers    
Economics at your fingertips  
 

Study on Performance of a Modified Two-Stage Piston Expander Based on Spray Heat Transfer

Qihui Yu (), Xiaodong Li, Zhigang Wei, Guoxin Sun and Xin Tan
Additional contact information
Qihui Yu: Department of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
Xiaodong Li: Department of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
Zhigang Wei: Department of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
Guoxin Sun: Department of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
Xin Tan: Department of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China

Sustainability, 2022, vol. 14, issue 19, 1-20

Abstract: To fully use high-pressure air, the two-stage piston expander (TSPE) has been widely studied. The following factors obstruct the use of the TSPE: A high expansion ratio will inevitably result in a lower air temperature in the cylinder, causing adverse effects such as ice blockage and lubricating oil freezing; the residual air from the I-stage cylinder will all flow into the II-stage cylinder, causing a large reverse force to the I-stage piston during the working process. To address the above problems, a modified two-stage piston expander (M-TSPE) based on spray heat transfer is proposed. Firstly, the working principle of the M-TSPE is introduced, followed by the construction of a mathematical model of the M-TSPE. Secondly, the valve-timing of the M-TSPE is determined and compared with the output power and efficiency of the TSPE. The output power and efficiency of the M-TSPE are increased by 57.58% and 13.28%, respectively. Then, the performance parameters of the M-TSPE with and without spray are compared and analyzed. Finally, parameter analysis is carried out on the air/water mass ratio and water mist particle size. Results show that when the intake pressure and load torque are set to 3 MPa and 150 N·m, respectively, the output power of the M-TSPE without spray is 14.22 kW and the output power of the M-TSPE with spray is 16.08 kW, which is a 13.08% increase in output power. The average air temperatures in the I-stage cylinder of the M-TSPE with and without spray are 321 K and 263 K, respectively, and the average air temperature in the I-stage cylinder is enhanced by 58 K. The output performance of the M-TSPE can be improved by increasing the mass ratio of the water mist in the cylinder and decreasing the particle size of the water mist.

Keywords: two-stage piston expander; spray heat transfer; high expansion ratio; output power; air temperature (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/19/12764/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/19/12764/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:19:p:12764-:d:935416

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12764-:d:935416