Scenario Simulation for the Urban Carrying Capacity Based on System Dynamics Model in Shanghai, China
Wenlong Yu and
Tianhui Tao ()
Additional contact information
Wenlong Yu: School of Civil Engineering, Shandong Jiaotong University, Ji’nan 250307, China
Tianhui Tao: College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China
Sustainability, 2022, vol. 14, issue 19, 1-18
Abstract:
Shanghai, as an international metropolis, has an ever-growing population and ongoing economic development, so the pressure on the natural resources and the environment is continually increased. How to ease the tension among economy, resources and the environment? The sustainable green development of Shanghai has been the focus of the public and the government. Urban carrying capacity involves complex interactions among population, the economy and the environment. Understanding the balance between these elements is an important scientific issue for sustainable green development in Shanghai. For this purpose, the balance between urban development and ecological resources was emphasized, and population carrying capacity, GDP (Gross Domestic Product), green ecological index and added value of secondary industry were investigated to measure urban carrying capacity. The dynamic changes of the carrying population, GDP, green ecological index and the added value of the secondary industry in Shanghai during 2018–2035 were simulated using a system dynamics model including three subsystems and 66 variables from a macroscopic perspective. Five development scenarios were employed during the simulation, namely a status-quo scenario, an economic-centric scenario, a high-tech-centric scenario, an environment-centric scenario and a coordinated equilibrium scenario. The simulation results indicated that the potential of carrying population will decline by 2035, and the economic and ecological indicators will also be at a low level under the status-quo scenario, which is an inferior option, while the under coordinated equilibrium scenario, the ecological environment, population growth and economic development will all perform excellently, which is the best option. Therefore, the urban carrying capacity of population, economy and resources in Shanghai may be improved by increasing investment in scientific research, increasing the expenditure on environmental protection and improving the recycling efficiency of waste solid and water. The results provide insights into the urban carrying capacity of Shanghai city.
Keywords: urban carrying capacity; system dynamics model; scenario simulation; coordinated equilibrium; Shanghai city (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/19/12910/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/19/12910/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:19:p:12910-:d:937783
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().