EconPapers    
Economics at your fingertips  
 

Differential Physiological Traits, Ion Homeostasis and Cane Yield of Sub-Tropical Sugarcane Varieties in Response to Long-Term Salinity Stress

Pooja Dhansu (), Ravinder Kumar (), Ashwani Kumar, Krishnapriya Vengavasi, Arun K. Raja, Srinivasavedantham Vasantha, Mintu Ram Meena, Neeraj Kulshreshtha and Shashi K. Pandey
Additional contact information
Pooja Dhansu: ICAR—Sugarcane Breeding Institute, Regional Center, Karnal 132001, India
Ravinder Kumar: ICAR—Sugarcane Breeding Institute, Regional Center, Karnal 132001, India
Ashwani Kumar: ICAR—Central Soil Salinity Research Institute, Karnal 132001, India
Krishnapriya Vengavasi: ICAR—Sugarcane Breeding Institute, Coimbatore 641007, India
Arun K. Raja: ICAR—Sugarcane Breeding Institute, Coimbatore 641007, India
Srinivasavedantham Vasantha: ICAR—Central Soil Salinity Research Institute, Karnal 132001, India
Mintu Ram Meena: ICAR—Sugarcane Breeding Institute, Regional Center, Karnal 132001, India
Neeraj Kulshreshtha: ICAR—Sugarcane Breeding Institute, Regional Center, Karnal 132001, India
Shashi K. Pandey: ICAR—Sugarcane Breeding Institute, Regional Center, Karnal 132001, India

Sustainability, 2022, vol. 14, issue 20, 1-15

Abstract: Sugarcane grown under a wide range of agro-climatic conditions accounts for ~80% of the sugar production worldwide. Since sugarcane productivity is severely affected by abiotic stresses and hence, an experiment was conducted for two consecutive years during 2020 and 2021 on popular sub-tropical sugarcane varieties. The experiment was laid out in two-factorial RBD consisting of nine sugarcane genotypes (Co 98014, Co 0118, Co 0238, Co 05011, Co 06034, Co 09022, Co 12029, Co 15023 and Co 15027) and salinity treatments (Control, EC iw ~ 4, 8 and 12 dS m −1 ) in 5 replications. Two budded setts were planted in pots and irrigated with saline water of respective levels till formative phase and observed the build-up in electrical conductivity of soil extract (ECse) from 0.48 (control) to 2.99, 4.81 and 7.08; while further saline irrigation increased the ECse values to 4.48, 6.24 and 9.33 dS m −1 in treatments EC iw ~ 4, 8 and 12 dS m −1 , respectively. Increase in soil EC decreased plant survival by 24.1, 47.0 and 79.6% under continued irrigation of EC iw ~ 4, 8, 12 dS m −1 with respect to control. Continued saline irrigation caused significant reduction in growth, which was associated with reduction in relative water content (RWC) and gas exchange traits. RWC decreased by 4.91 to 21.9%, chlorophyll content by 8.46 to 32.75%, photosynthetic rate (Pn) by 16.85 to 91.44%, stomatal conductance by 14.96 to 84.25%, transpiration rate by 14.13% to 89.8% and chlorophyll fluorescence by 5.33 to 42.67% from EC iw ~ 4 to 12 dS m −1 , respectively. Significant variations in Na + and K + ion content was observed under elevated saline condition in roots, leaves and juice extract of genotypes. Na + /K + ratio, an important trait for screening salinity tolerance, increased in all genotypes as compared to control, the increase was predominant in susceptible varieties. Single cane weight (SCW) was drastically affected by saline irrigation, with a reduction of 36.4, 68.5 and 83.5% at EC iw ~ 4, 8 and 12 dS m −1 , respectively as compared to control, with similar declining trend in juice quality. Based on our results, Co 0238, Co 0118 and Co 98014 were tolerant to salinity stress by maintaining higher Pn, lower leaf Na + /K + ratio, higher SCW and higher juice sucrose content.

Keywords: sugarcane; water salinity; ion partitioning; gas exchange traits (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/20/13246/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/20/13246/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:20:p:13246-:d:942854

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13246-:d:942854