EconPapers    
Economics at your fingertips  
 

Dynamic Monitoring of the Ecological Vulnerability for Multi-Type Ecological Functional Areas during 2000–2018

Xingming Yuan and Bing Guo ()
Additional contact information
Xingming Yuan: School of Architecture and Information Engineering, Shandong Vocational College of Industry, Zibo 256414, China
Bing Guo: School of Civil Architectural Engineering, Shandong University of Technology, Zibo 255000, China

Sustainability, 2022, vol. 14, issue 23, 1-24

Abstract: Studies that consider both the differences of evaluation systems and index weights among different ecological areas in different study periods for ecological vulnerability evaluation have not been reported yet. In addition, the comparability of vulnerability assessment results among different study areas is poor. This paper proposed a novel quantitative vulnerability evaluation method for multi-type and multi-temporal ecological functional areas using a dynamic weighting method: Three-River Source region grassland–wetland ecological functional area (TRSR), Guiqiandian karst rocky desertification control ecological functional area (GQD), Hunshandake desertification control ecological functional area (HSDK), and Chuandian forest and biodiversity ecological functional area (CD), and then introduced net primary productivity (NPP) to realize the determination of multi-type ecological vulnerability thresholds, which is helpful to compare the vulnerability evaluation results of different ecological functional areas in a unified and comparable level. The proposed novel quantitative vulnerability evaluation method had higher applicability in vulnerability assessment for multi-type ecological functional areas (91.1% for TRSR, 91.9% for HSDK, 91.7% for CD, and 94.2% for GQD) based on the dynamic weight determination method. The determination of vulnerability thresholds based on NPP could provide a comparable level to investigate the spatial distribution patterns of ecological vulnerability in multi-type ecological functional areas for different periods. The average ecological vulnerability of the TRSR, GQD, and CD was classified as mild vulnerability, while that of the HSDK was classified as moderate vulnerability. The research results could provide a novel method for the support of ecological protection for multi-type ecological zones on a national scale.

Keywords: multi-type functional areas; ecological vulnerability; NPP; climate change; human activities (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/23/15987/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/23/15987/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:23:p:15987-:d:989097

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15987-:d:989097