Variability of Potential Soil Nitrogen Cycling Rates in Stormwater Bioretention Facilities
Erin N. Rivers and
Jennifer L. Morse
Additional contact information
Erin N. Rivers: Department of Watershed Sciences, Utah State University, Logan, UT 84322, USA
Jennifer L. Morse: Department of Environmental Science and Management, Portland State University, Portland, OR 97201, USA
Sustainability, 2022, vol. 14, issue 4, 1-17
Abstract:
Low-impact development (LID) is a common management practice used to infiltrate and filter stormwater through vegetated soil systems. The pollutant reduction potential of these systems is often characterized by a single pollutant removal rate; however, the biophysical properties of soils that regulate the removal of pollutants can be highly variable depending on environmental conditions. The goal of this study was to characterize the variability of soil properties and nitrogen (N) cycling rates in bioretention facilities (BRFs). Soil properties and potential N cycling processes were measured in nine curbside bioretention facilities (BRFs) in Portland, OR during summer and winter seasons, and a subset of six sites was sampled seasonally for two consecutive years to further assess temporal variability in soil N cycling. Potential N cycling rates varied markedly across sites, seasons, and years, and higher variability in N cycling rates was observed among sites with high infiltration rates. The observed seasonal and annual changes in soil parameters suggest that nutrient removal processes in BRFs may be highly variable across sites in an urban landscape. This variability has important implications for predicting the impacts of LID on water quality through time, particularly when estimated removal rates are used as a metric to assess compliance with water quality standards that are implemented to protect downstream ecosystems.
Keywords: denitrification; nitrogen cycle; green stormwater infrastructure; bioretention; low impact development; infiltration rate (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/4/2175/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/4/2175/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:4:p:2175-:d:749213
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().