EconPapers    
Economics at your fingertips  
 

Enhancing Power Grid Resilience through Real-Time Fault Detection and Remediation Using Advanced Hybrid Machine Learning Models

Fahad M. Almasoudi ()
Additional contact information
Fahad M. Almasoudi: Department of Electrical Engineering, Faculty of Engineering, University of Tabuk, Tabuk 47913, Saudi Arabia

Sustainability, 2023, vol. 15, issue 10, 1-21

Abstract: Ensuring a reliable and uninterrupted supply of electricity is crucial for sustaining modern and advanced societies. Traditionally, power systems analysis was mostly dependent on formal commercial software, mathematical models produced via a mix of data analysis, control theory, and statistical methods. As power grids continue to grow and the need for more efficient and sustainable energy systems arises, attention has shifted towards incorporating artificial intelligence (AI) into traditional power grid systems, making their upgrade imperative. AI-based prediction and forecasting techniques are now being utilized to improve power production, transmission, and distribution to industrial and residential consumers. This paradigm shift is driven by the development of new methods and technologies. These technologies enable faster and more accurate fault prediction and detection, leading to quicker and more effective fault removal. Therefore, incorporating AI in modern power grids is critical for ensuring their resilience, efficiency, and sustainability, ultimately contributing to a cleaner and greener energy future. This paper focuses on integrating artificial intelligence (AI) in modern power generation grids, particularly in the fourth industrial revolution (4IR) context. With the increasing complexity and demand for more efficient and reliable power systems, AI has emerged as a possible approach to solve these difficulties. For this purpose, real-time data are collected from the user side, and internal and external grid faults occurred during a time period of three years. Specifically, this research delves into using state-of-the-art machine learning hybrid models at end-user locations for fault prediction and detection in electricity grids. In this study, hybrid models with convolution neural networks (CNN) have been developed, such as CNN-RNN, CNN-GRU, and CNN-LSTM. These approaches are used to explore how these models can automatically identify and diagnose faults in real-time, leading to faster and more effective fault detection and removal with minimum losses. By leveraging AI technology, modern power grids can become more resilient, efficient, and sustainable, ultimately contributing to a cleaner and greener energy future.

Keywords: power grids; hybrid machine leaning models (HML); fault detection and removal; renewable energy (RE); smart grids (SG) (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/10/8348/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/10/8348/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:10:p:8348-:d:1152000

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8348-:d:1152000