EconPapers    
Economics at your fingertips  
 

Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application

Salahuddin Khan ()
Additional contact information
Salahuddin Khan: College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Sustainability, 2023, vol. 15, issue 16, 1-12

Abstract: Electrical load forecasting plays a crucial role in planning and operating power plants for utility factories, as well as for policymakers seeking to devise reliable and efficient energy infrastructure. Load forecasting can be categorized into three types: long-term, mid-term, and short-term. Various models, including artificial intelligence and conventional and mixed models, can be used for short-term load forecasting. Electricity load forecasting is particularly important in countries with restructured electricity markets. The accuracy of short-term load forecasting is crucial for the efficient management of electric systems. Precise forecasting offers advantages for future projects and economic activities of power system operators. In this study, a novel integrated model for short-term load forecasting has been developed, which combines the wavelet transform decomposition (WTD) model, a radial basis function network, and the Thermal Exchange Optimization (TEO) algorithm. The performance of this model was evaluated in two diverse deregulated power markets: the Pennsylvania-New Jersey-Maryland electricity market and the Spanish electricity market. The obtained results are compared with various acceptable standard forecasting models.

Keywords: load forecasting; TEO optimization algorithm; RBF neural network; electricity market (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/16/12311/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/16/12311/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:16:p:12311-:d:1215835

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12311-:d:1215835