EconPapers    
Economics at your fingertips  
 

Optimizing Hybrid Photovoltaic/Battery/Diesel Microgrids in Distribution Networks Considering Uncertainty and Reliability

Zulfiqar Ali Memon () and Mohammad Amin Akbari
Additional contact information
Zulfiqar Ali Memon: College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates
Mohammad Amin Akbari: Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus

Sustainability, 2023, vol. 15, issue 18, 1-23

Abstract: Due to the importance of the allocation of energy microgrids in the power distribution networks, the effect of the uncertainties of their power generation sources and the inherent uncertainty of the network load on the problem of their optimization and the effect on the network performance should be evaluated. The optimal design and allocation of a hybrid microgrid system consisting of photovoltaic resources, battery storage, and a backup diesel generator are discussed in this paper. The objective of the problem is minimizing the costs of power losses, energy resources generation, diesel generation as backup resource, battery energy storage as well as load shedding with optimal determination of the components energy microgrid system include its installation location in the 33-bus distribution network and size of the PVs, batteries, and Diesel generators. Additionally, the effect of uncertainties in photovoltaic radiation and network demand are evaluated on the energy microgrid design and allocation. A Monte Carlo simulation is used to explore the full range of possibilities and determine the optimal decision based on the variability of the inputs. For an accurate assessment of the system’s reliability, a forced outage rate (FOR) analysis is performed to calculate potential photovoltaic losses that could affect the operational probability of the system. The cloud leopard optimization (CLO) algorithm is proposed to optimize this optimization problem. The effectiveness of the proposed algorithm in terms of accuracy and convergence speed is verified compared to other state-of-the-art optimization methods. To further improve the performance of the proposed algorithm, the reliability and uncertainties of photovoltaic resource production and load demand are investigated.

Keywords: distribution network operation; optimal energy management; solar energy; energy storage; metaheuristic (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/18/13499/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/18/13499/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:18:p:13499-:d:1236131

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13499-:d:1236131