The Impact of Degradation on a Building’s Energy Performance in Hot-Humid Climates
Ahmad Taki and
Anastasiya Zakharanka ()
Additional contact information
Ahmad Taki: Leicester School of Architecture, De Montfort University, Leicester LE1 9BH, UK
Anastasiya Zakharanka: Leicester School of Architecture, De Montfort University, Leicester LE1 9BH, UK
Sustainability, 2023, vol. 15, issue 2, 1-34
Abstract:
To date, energy consumption in buildings accounts for a significant part of the total amount of energy consumed worldwide. The effect of ageing and degradation of various building components is one of the least studied reasons for the possible increase in energy consumed in buildings over time. In addition, there is a clear lack of practical guidelines that would help specialists take this factor into account. In this paper, an attempt is made to assess a possible change in the energy performance of buildings due to the degradation of their various components (insulated glass units, thermal insulation, airtightness, solar reflectivity of the building envelope, and photovoltaic modules). Detached and apartment buildings in hot-humid climates with reference to the United Arab Emirates (UAE) were considered. The study was based on simulation research using EnergyPlus, in which the initially collected data on the possible deterioration of the properties of various building components was used for dynamic thermal simulation of selected buildings. The results showed an increase in energy consumption for cooling in detached houses might reach up to 9.53–38.4% over 25 years for more airtight and insulated buildings and 12.28–34.93% for less airtight and insulated buildings. As a result, certain patterns of changes in energy consumption for cooling buildings were established, based on which a set of guidelines was developed. These guidelines can help specialists in various fields better understand the trends in the energy performance of buildings under the influence of degradation processes and take appropriate measures.
Keywords: component degradation; ageing; building energy performance; dynamic thermal simulation; durability; case study; hot-humid climate (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/2/1145/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/2/1145/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:2:p:1145-:d:1028212
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().