EconPapers    
Economics at your fingertips  
 

Machine Learning Classification and Prediction of Wind Estimation Using Artificial Intelligence Techniques and Normal PDF

Hiba H. Darwish and Ayman Al-Quraan ()
Additional contact information
Hiba H. Darwish: Electrical Power Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan
Ayman Al-Quraan: Electrical Power Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan

Sustainability, 2023, vol. 15, issue 4, 1-29

Abstract: Estimating wind energy at a specific wind site depends on how well the real wind data in that area can be represented using an appropriate distribution function. In fact, wind sites differ in the extent to which their wind data can be represented from one region to another, despite the widespread use of the Weibull function in representing the wind speed in various wind locations in the world. In this study, a new probability distribution model (normal PDF) was tested to implement wind speed at several wind locations in Jordan. The results show high compatibility between this model and the wind resources in Jordan. Therefore, this model was used to estimate the values of the wind energy and the extracted energy of wind turbines compared to those obtained by the Weibull PDF. Several artificial intelligence techniques were used (GA, BFOA, SA, and a neuro-fuzzy method) to estimate and predict the parameters of both the normal and Weibull PDFs that were reflected in conjunction with the actual observed data of wind probabilities. Afterward, the goodness of fit was decided with the aid of two performance indicators (RMSE and MAE). Surprisingly, in this study, the normal probability distribution function (PDF) outstripped the Weibull PDF, and interestingly, BFOA and SA were the most accurate methods. In the last stage, machine learning was used to classify and predict the error level between the actual probability and the estimated probability based on the trained and tested data of the PDF parameters. The proposed novel methodology aims to predict the most accurate parameters, as the subsequent energy calculation phases of wind depend on the proper selection of these parameters. Hence, 24 classifier algorithms were used in this study. The medium tree classifier shows the best performance from the accuracy and training time points of view, while the ensemble-boosted trees classifier shows poor performance regarding providing correct predictions.

Keywords: wind estimation; normal PDF; Weibull PDF; optimization algorithms; machine learning; prediction; classification; accuracy (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/4/3270/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/4/3270/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:4:p:3270-:d:1064595

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3270-:d:1064595