EconPapers    
Economics at your fingertips  
 

Evolutionary Game of Digital-Driven Photovoltaic–Storage–Use Value Chain Collaboration: A Value Intelligence Creation Perspective

Jing Yu (), Jicheng Liu, Jiakang Sun and Mengyu Shi
Additional contact information
Jing Yu: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Jicheng Liu: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Jiakang Sun: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Mengyu Shi: School of Economics and Management, North China Electric Power University, Beijing 102206, China

Sustainability, 2023, vol. 15, issue 4, 1-30

Abstract: In the context of “carbon neutral”, distributed energy, including photovoltaic power generation and energy storage systems, is developing rapidly. Meanwhile, the new generation of information technology, such as “Cloud computing, Big data, the Internet of things, Mobile Internet, AI, Blockchain”, is driving the digital transformation of the energy industry. Under digital drive, how the agents in the photovoltaic–storage–use value chain collaborate and create value intelligently is a question worthy of deep consideration. Firstly, the value creation mechanism and collaborative process of the digital-driven photovoltaic–storage–use value chain are analyzed from a value intelligence creation perspective. Secondly, the tripartite evolutionary game model of photovoltaic power generator, energy storage provider and user is established. Finally, the influencing factors of digital- driven photovoltaic–storage–use value chain collaboration are explored through a numerical simulation, and management suggestions are put forward. The study finds the following: (1) The behavior choice of each agent in the value chain will affect the decision of other agents. In particular, the photovoltaic power generator has a great influence on the cooperative willingness of other agents. To promote value chain collaboration, the guiding role of the photovoltaic power generator should be fully realized. (2) Agents on the value chain can use a variety of digital technologies to improve enabling benefits, which is conducive to promoting value chain collaboration. (3) The driving costs and potential risks are obstacles for value chain collaboration. Cost reduction and risk prevention are effective ways to improve the willingness of collaboration. (4) Reasonable incentive compensation mechanisms and information asymmetry punishment measures are the keys to enhancing collective willingness. This research provides theoretical support for photovoltaic–storage–use value chain collaboration from a value intelligence creation perspective.

Keywords: value chain collaboration; photovoltaic power generation–energy storage–energy use; digital-driven; value intelligence creation; evolutionary game (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/4/3287/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/4/3287/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:4:p:3287-:d:1064826

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3287-:d:1064826