Application of Artificial Intelligence Model Solar Radiation Prediction for Renewable Energy Systems
Hasan Alkahtani,
Theyazn H. H. Aldhyani () and
Saleh Nagi Alsubari
Additional contact information
Hasan Alkahtani: College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
Theyazn H. H. Aldhyani: Applied College in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
Saleh Nagi Alsubari: Department of Computer Science, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
Sustainability, 2023, vol. 15, issue 8, 1-21
Abstract:
Solar power is an excellent alternative power source that can significantly cut our dependency on nonrenewable and destructive fossil fuels. Solar radiation (SR) can be predicted with great precision, and it may be possible to drastically minimize the impact cost associated with the development of solar energy. To successfully implement solar power, all projects using solar energy must have access to reliable sun radiation data. However, the deployment, administration, and performance of photovoltaic or thermal systems may be severely impacted by the lack of access to and the ambiguity of this data. Methods for estimating and predicting solar radiation can help solve these problems. Prediction techniques can be put to use in the real world to, for example, keep the power grid functioning smoothly and ensure that the supply of electricity exactly matches the demand at all times. Recently developed forecasting methods include the deep learning convolutional neural networks combined with long short-term memory (CNN-LSTM) model. This study provides a comprehensive examination of meteorological data, along with the CNN-LSTM methods, in order to design and train the most accurate SR forecasting artificial neural network model possible. Weather data was collected from a NASA meteorological station that included details such as the current temperature, the relative humidity, and the speed of the wind. This research revealed that SR is highly correlated with both temperature and radiation. Furthermore, the findings demonstrated that the CNN-LSTM algorithm outperformed the other algorithm-trained models, as evidenced by the performance score of the respective models, with a maximum coefficient determination (R²) > 95% and a minimum mean square error (MSE) of 0.000987 at the testing step. In comparison with different existing artificial intelligence models, the CNN-LSTM model outperformed the other models. These scenarios demonstrated that a basic implementation of CNN-LSTM can be used to supplement conventional methods for predicting SR, provide possibilities to monitor radiation at a low cost, and encourage the adoption of data-driven management.
Keywords: solar energy; modeling and forecasting; deep learning; artificial intelligence (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/15/8/6973/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/8/6973/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:8:p:6973-:d:1128944
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().