EconPapers    
Economics at your fingertips  
 

Research on the Sustainable Development of the Bistrita Ardeleana River in Order to Stop the Erosion of the Riverbanks and the Thalweg

Aurelian Cosmin Moldovan (), Tomi Alexandrel Hrăniciuc, Valer Micle () and Nicolae Marcoie
Additional contact information
Aurelian Cosmin Moldovan: Faculty of Materials and Environmental Engineering, Department of Environment Engineering and Entrepreneurship of Sustainable Development, Technical University of Cluj-Napoca, 103-105 Muncii Blvd., 400641 Cluj-Napoca, Romania
Tomi Alexandrel Hrăniciuc: Faculty of Hydrotechnics, Geodesy and Environmental Engineering, “Gheorghe Asachi” Technical University of Iasi, Dimitrie Mangeron Blvd. nr. 65, 70050 Iasi, Romania
Valer Micle: Faculty of Materials and Environmental Engineering, Department of Environment Engineering and Entrepreneurship of Sustainable Development, Technical University of Cluj-Napoca, 103-105 Muncii Blvd., 400641 Cluj-Napoca, Romania
Nicolae Marcoie: Faculty of Hydrotechnics, Geodesy and Environmental Engineering, “Gheorghe Asachi” Technical University of Iasi, Dimitrie Mangeron Blvd. nr. 65, 70050 Iasi, Romania

Sustainability, 2023, vol. 15, issue 9, 1-22

Abstract: The impact of dams and reservoirs on the aquatic ecosystem of rivers is a very important topic for water resource management. These hydrotechnical facilities change the natural hydromorphological regime of the rivers. This paper analyzed the hydrodynamic characteristics of an undeveloped riverbed section downstream of the Colibița reservoir, from the Bistrita Ardeleana River hydrographic basin. After processing the data obtained on the field, two hydraulic models were made using the MIKE 11 program, which aimed to identify the hydraulic parameters such as the wet section, the depth, and the water velocity. The first modeling was used for the flow rate of Q = 54.5 m 3 /s: the water depth was between 1.952 m and 2.559 m; and the water velocity varied between 1.148 m/s and 1.849 m/s. The second modeling was used for a flow rate of Q = 178 m 3 /s and showed that the water depth had values between 3.701 m and 4.427 m; and the water velocity varied between 1.316 m/s and 2.223 m/s. Following the granulometric analysis, the average diameter of the particle in the thalweg was D50 = 25.18 mm. The conclusion reached as a result of hydraulic modeling and granulometric analyses indicated that hydromorphological processes take place along the length of the analyzed sector, which have negative effects on water quality as well as on the instability of the riverbed. To make the riverbed safe along the entire studied length, we managed to identify some alternative solutions that have the role of stabilizing the banks, respectively, to stop the deepening of the thalweg. The alternative hydrotechnical constructions will increase the roughness of the riverbed, essentially reducing the water speed and increasing the favorable conditions for the retention of alluvium.

Keywords: rivers; dams; sustainable development; the morphology of rivers; green methods; hydraulic modeling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/15/9/7431/pdf (application/pdf)
https://www.mdpi.com/2071-1050/15/9/7431/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:15:y:2023:i:9:p:7431-:d:1137326

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7431-:d:1137326