EconPapers    
Economics at your fingertips  
 

Identification of Land Use Conflict Based on Multi-Scenario Simulation—Taking the Central Yunnan Urban Agglomeration as an Example

Guangzhao Wu, Yilin Lin (), Junsan Zhao and Qiaoxiong Chen
Additional contact information
Guangzhao Wu: Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Yilin Lin: Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Junsan Zhao: Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Qiaoxiong Chen: Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

Sustainability, 2024, vol. 16, issue 22, 1-21

Abstract: Land use conflict is an inevitable and objective phenomenon during regional development, with significant impacts on both regional economic growth and ecological security. Scientifically assessing the spatiotemporal evolution of these conflicts is essential to optimize land use structures and promote sustainable resource utilization. This study employs multi-period land use/land cover remote sensing data from China to develop a model for the measurement of land use conflict from the perspective of the landscape ecological risk. By applying the optimal landscape scale method to determine the most appropriate analysis scale, this research investigates the spatiotemporal evolution characteristics of land use conflicts in the Central Yunnan Urban Agglomeration from 2000 to 2020. Furthermore, by integrating the Patch-Generating Land Use Simulation (PLUS) model with the Multi-Objective Programming (MOP) algorithm, this study simulates the spatial patterns of land use conflict in 2030 under four scenarios: Natural Development (ID), Economic Development (ED), Ecological Conservation (PD), and Sustainable Development (SD). The findings reveal that, from 2000 to 2020, the proportion of areas with strong and moderately strong conflict levels in the Central Yunnan Urban Agglomeration increased by 2.19%, while the proportion of areas with weak and moderately weak conflict levels decreased by 1.45%, underscoring the growing severity of land use conflict. The predictions for 2030 suggest that the spatial pattern of conflict under various scenarios will largely reflect the trends observed in 2020. Under the ID scenario, areas with weak and moderately weak conflict levels constitute 57.5% of the region; this increases by 0.85% under the SD scenario. Conversely, areas experiencing strong and moderately strong conflict levels, which stand at 33.02% under the ID scenario, decrease by 1.04% under the SD scenario. These projections indicate that the SD scenario, which aims to balance ecological conservation with economic development, effectively mitigates land use conflict, making it the most viable strategy for future regional development.

Keywords: Central Yunnan urban agglomeration; optimal landscape scale; PLUS model; multi-scenario simulation; multi-objective programming; land use conflict (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/22/10043/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/22/10043/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:22:p:10043-:d:1523327

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-05
Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10043-:d:1523327