Temporal and Spatial Evolution of Meteorological Drought in Inner Mongolia Inland River Basin and Its Driving Factors
Weijie Zhang,
Hengzhi Guo,
Yingjie Wu,
Zezhong Zhang,
Hang Yin,
Kai Feng (),
Jian Liu and
Bin Fu
Additional contact information
Weijie Zhang: Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Hengzhi Guo: School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
Yingjie Wu: Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Zezhong Zhang: School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
Hang Yin: Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Kai Feng: School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
Jian Liu: School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
Bin Fu: School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
Sustainability, 2024, vol. 16, issue 5, 1-20
Abstract:
In order to analyze the temporal and spatial evolution of meteorological drought and explore its driving factors, the inland river basin of Inner Mongolia (IMIRB) was taken as a typical research area, the Standardized Precipitation Evapotranspiration Index (SPEI) of various scales was calculated, and the spatio-temporal trend change characteristics of meteorological drought were analyzed combined with the modified Mann–Kendall trend test (MMK). The typical meteorological drought events were analyzed by using the three-dimensional identification method, and the spatio-temporal evolution characteristics and dynamic evolution law of meteorological drought were analyzed comprehensively and accurately. The driving effects of Pacific Decadal Oscillation (PDO), North Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and sunspot on meteorological drought were investigated by using the cross wavelet method. The results are as follows: (1) with the increase of SPEI time scale, the frequency of meteorological drought decreased, but the duration and intensity of drought increased; (2) the trend was greatest in spring, with the largest number of areas showing a significant downward trend in SPEI, the strongest persistence in intensity, and significant aridification characteristics; (3) summer meteorological droughts had the largest area of high intensity drought but the smallest area of high frequency areas, and winter droughts had the smallest area of high intensity drought but the largest percentage of high frequency areas; (4) the meteorological drought event that occurred from April 2017 to December 2017 was the most serious, and reached its maximum value in June 2017, which mainly experienced five processes: occurrence—intensification—attenuation—re-intensification—extinction; (5) atmospheric circulation factor, sunspot, and meteorological drought of IMIRB were correlated, and ENSO had the greatest effect on drought. This study provides effective theoretical support for IMIRB drought prevention and disaster reduction.
Keywords: meteorological drought; spatio-temporal evolution; three-dimensional recognition; atmospheric circulation factor; Inner Mongolia inland river basin (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/16/5/2212/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/5/2212/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:5:p:2212-:d:1352457
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().