EconPapers    
Economics at your fingertips  
 

Embodied Carbon and the Nuances in Office-to-Residential Conversions

Emmanuel Kofi Gavu () and Richard B. Peiser
Additional contact information
Emmanuel Kofi Gavu: Department of Land Economy, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi 00233, Ghana
Richard B. Peiser: Department of Urban Planning and Design, Harvard University Graduate School of Design, Cambridge, MA 02138, USA

Sustainability, 2024, vol. 16, issue 7, 1-14

Abstract: Reducing carbon emissions associated with buildings is a top priority for mitigating the human impacts from climate change. Reducing carbon emissions resulting from the manufacturing, designing, constructing, investing, owning, operating, occupying, renovating, and demolishing of buildings is essential to safeguard the environment from negative consequences. This paper relates to the environment and human influence on the climate and addresses the different amounts of embedded carbon for building activities ranging from new buildings to major renovations to minor renovations, using a methodology termed the “whole-life carbon measurement”. The data from the case studies indicate that refurbished or renovated buildings exhibit the least carbon footprint compared to other alternatives. This outcome can be attributed to the sustainable practice of reusing materials, coupled with the positive effects of retrofitting. The expectation that refurbished buildings would demonstrate a lower carbon footprint aligns with the principles of sustainability, emphasizing the environmental benefits of repurposing existing structures. While embedded carbon is currently not priced, it is important that it be accurately measured over the entire life cycle of buildings if the real estate industry is to meet sustainability goals.

Keywords: embodied carbon; climate change; whole-life carbon measurement; full life cycle; office; residential (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/7/2711/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/7/2711/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:7:p:2711-:d:1363814

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2711-:d:1363814