EconPapers    
Economics at your fingertips  
 

Multi-Agent Reinforcement Learning for Job Shop Scheduling in Dynamic Environments

Yu Pu, Fang Li () and Shahin Rahimifard
Additional contact information
Yu Pu: School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
Fang Li: School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
Shahin Rahimifard: School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK

Sustainability, 2024, vol. 16, issue 8, 1-26

Abstract: In response to the challenges of dynamic adaptability, real-time interactivity, and dynamic optimization posed by the application of existing deep reinforcement learning algorithms in solving complex scheduling problems, this study proposes a novel approach using graph neural networks and deep reinforcement learning to complete the task of job shop scheduling. A distributed multi-agent scheduling architecture (DMASA) is constructed to maximize global rewards, modeling the intelligent manufacturing job shop scheduling problem as a sequential decision problem represented by graphs and using a Graph Embedding–Heterogeneous Graph Neural Network (GE-HetGNN) to encode state nodes and map them to the optimal scheduling strategy, including machine matching and process selection strategies. Finally, an actor–critic architecture-based multi-agent proximal policy optimization algorithm is employed to train the network and optimize the decision-making process. Experimental results demonstrate that the proposed framework exhibits generalizability, outperforms commonly used scheduling rules and RL-based scheduling methods on benchmarks, shows better stability than single-agent scheduling architectures, and breaks through the instance-size constraint, making it suitable for large-scale problems. We verified the feasibility of our proposed method in a specific experimental environment. The experimental results demonstrate that our research can achieve formal modeling and mapping with specific physical processing workshops, which aligns more closely with real-world green scheduling issues and makes it easier for subsequent researchers to integrate algorithms with actual environments.

Keywords: multi-agent proximal policy optimization; job shop scheduling problem; graph neural network; green scheduling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/8/3234/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/8/3234/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:8:p:3234-:d:1374658

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3234-:d:1374658