EconPapers    
Economics at your fingertips  
 

Methane Emission Estimation Tools as a Basis for Sustainable Underground Mining of Gas-Bearing Coal Seams

Sergey Sidorenko (), Vyacheslav Trushnikov and Andrey Sidorenko
Additional contact information
Sergey Sidorenko: Faculty of Economics, Saint-Petersburg Mining University, 199106 Saint Petersburg, Russia
Vyacheslav Trushnikov: Faculty of Economics, Saint-Petersburg Mining University, 199106 Saint Petersburg, Russia
Andrey Sidorenko: JCS Siberian Coal Energy Company, 115054 Moscow, Russia

Sustainability, 2024, vol. 16, issue 8, 1-22

Abstract: Underground coal mining of gas-bearing coal seams is accompanied by the emission of large amounts of methane, which increases with depth. Coal seam methane is not only a major cause of major accidents in coal mines, but is also a greenhouse gas that has a significant negative impact on the Earth’s atmosphere. Analysis of the efficiency of underground coal mining suggests that as the depth of mining increases, the productivity of a longwall decreases by a factor of 3–5 or more, while the specific volume of methane emitted increases manifold and the efficiency of methane management decreases. Effective management of coal seam methane can only be achieved by monitoring its content at key points in a system of workings. Monitoring of methane not only eliminates the risk of explosions, but also lets us assess the effectiveness of using methane management techniques and their parameters to improve efficiency and reduce the cost of methane management (including a methane drainage) for ensuring sustainable underground coal mining. The aim of this article is to develop a software and hardware complex for monitoring methane in a coal mine by creating a simulation model for monitoring methane. The Arduino Uno board and the methane sensor MQ-4 were used for this purpose. In this article, the causes of methane emissions in coal mines, gas control systems, the structure of the mine monitoring system, and the causes of risks and occurrence of accidents in coal mines are considered. As a result of the work, the mathematical model of the methane measurement sensor was developed; the Arduino Uno board developed a simulation system for methane monitoring; and the numerical results of the research are presented in the graphs.

Keywords: coal mine; coal seam methane; environmental management; sensors; monitoring systems; Arduino; diagnostics (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/8/3457/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/8/3457/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:8:p:3457-:d:1379646

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3457-:d:1379646