Examining Cardboard as a Construction Material for Sustainable Building Practices in Lima, Peru
Daniel Ikemiyashiro Higa and
Ahmad Taki ()
Additional contact information
Daniel Ikemiyashiro Higa: Leicester School of Architecture, De Montfort University, Leicester LE1 9BH, UK
Ahmad Taki: Leicester School of Architecture, De Montfort University, Leicester LE1 9BH, UK
Sustainability, 2024, vol. 17, issue 1, 1-36
Abstract:
This research work aimed to analyse the impact and potential of cardboard as a construction material, as well as cultural aspects and sustainable construction regulations, in the context of Lima, Peru. The study employed a mixed research methodological approach, including three case studies from Japan, the Netherlands, and the UK, online interviews, and surveys with British, Polish, and Peruvian architects. Additionally, a range of dynamic thermal simulations of an existing school building in the UK employing cardboard construction material were conducted to evaluate its impact on energy consumption. The survey revealed that there is a gap in information about the material applied to the architecture and construction environment, which is coupled with a general distrust and little credibility regarding its inclusion. However, cardboard is also seen as a complementary material in hybrid construction systems, with potential recycling enhancing environmental sustainability. The case studies showed cardboard structures can fulfil different functions with flexible designs that are adaptable to different contexts, simple, economical, accessible, recyclable, and capable of resisting natural disasters. However, post-construction consequences affect the structural integrity. Simulations carried out with EnergyPlus confirmed that cardboard has an optimal performance that can be a great complement or variation to traditional materials to reduce the carbon footprint and could meet the U-value requirements established in the construction regulations. Since it has low thermal conductivity and good acoustic insulation, it is recyclable and generates fewer CO 2 emissions, and it is economical, accessible, versatile, and light in use. For example, from a technical point of view, when used as thermal insulation, this element outperforms other conventional materials due to its cellular structure, which traps air, a poor conductor of heat. This study provides a set of guidelines for sustainable building practices. Such guidelines can be adopted to produce a prototype of a sustainable building using cardboard as the main construction material to contribute to the current debates on the state of building materials. It offers valuable perspectives on the development of building materials, construction techniques, and building regulations that can guide the way forward for sustainable building practices in the future, informing policymakers and building designers about construction techniques that adhere to building codes and lessen the built environment’s environmental impact.
Keywords: cardboard; architecture; prototype; experimental design; construction materials; sustainability; simulations; energy efficiency; case studies; Peru (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/1/10/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/1/10/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2024:i:1:p:10-:d:1551475
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().