EconPapers    
Economics at your fingertips  
 

A Case Study: Designing for Sustainability and Reliability in an Automotive Seat Structure

Celalettin Yuce, Fatih Karpat, Nurettin Yavuz and Gökhan Sendeniz
Additional contact information
Celalettin Yuce: Department of Mechanical Engineering, Uludag University, 16059 Bursa, Turkey
Fatih Karpat: Department of Mechanical Engineering, Uludag University, 16059 Bursa, Turkey
Nurettin Yavuz: Department of Mechanical Engineering, Uludag University, 16059 Bursa, Turkey
Gökhan Sendeniz: Department of Mechanical Engineering, Uludag University, 16059 Bursa, Turkey

Sustainability, 2014, vol. 6, issue 7, 1-24

Abstract: Recently, sustainability has been a growing concern for many industries and especially for the transportation sector due to it being the second largest energy consumer and largest contributor of anthropogenic greenhouse gas emissions within the European Union. New legal restrictions on the emission rates have forced the automotive sector to examine different fuel-efficient technologies. Vehicle weight reduction is one of the most important methods of improving fuel efficiency and reducing CO 2 emissions. Accordingly, lighter, safer, more fuel efficient, and environmentally sustainable vehicles are a priority for European authorities. In the present work, the passenger seat structure was considered as the area for lightweighting due to its important role in the mass of commercial vehicles in terms of numbers per vehicle. In addition, seat structures presented the best opportunity for weight reduction using new materials and design techniques. Detailed (3D) finite element models of passenger seats were developed for finite element analyses (FEA). To obtain a lightweight and safe seat structure, different materials and thicknesses of profiles were analyzed. Lightweight passenger seat prototypes were developed and an overall 20% weight reduction was achieved including the structural frame, chassis and pillar. In addition, the new passenger seat meets ECE R14 safety norms.

Keywords: sustainability; vehicle efficiency; lightweighting; bus; passenger seat; finite element analyses; ECE R14 (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/6/7/4608/pdf (application/pdf)
https://www.mdpi.com/2071-1050/6/7/4608/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:6:y:2014:i:7:p:4608-4631:d:38472

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:6:y:2014:i:7:p:4608-4631:d:38472