EconPapers    
Economics at your fingertips  
 

Characterization and Potential Use of Biochar for the Remediation of Coal Mine Waste Containing Efflorescent Salts

Luis Carlos Díaz Muegue, Julio César Arranz González and Gustavo Peñuela Mesa
Additional contact information
Luis Carlos Díaz Muegue: GEAB-CIDTEC, Facultad de Ingeniería, Universidad Popular del Cesar, UPC, Balneario Hurtado Vía Patillal, Valledupar 200001, Colombia
Julio César Arranz González: Área de Recursos Energéticos y Sostenibilidad Minera, Instituto Geológico Minero de España, IGME, 28003 Madrid, Spain
Gustavo Peñuela Mesa: Grupo de Investigación Diagnostico y Control de la Contaminación (GDCON), Facultad de Ingeniería Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín 050010, Colombia

Sustainability, 2017, vol. 9, issue 11, 1-11

Abstract: In open pit coal mining, soil and vegetation are removed prior to the start of mining activities, causing physical, chemical, and microbiological changes to the soil and landscape. The present work shows the results of an integrated study of the remediation of mine waste with a high level of salt contamination in areas of the Cesar Department (Colombia), employing biochar as an amendment. Physical-chemical properties including Munsell color, texture, pH, electrical conductivity, water-holding capacity, cation exchange capacity, metal content, organic carbon, sulfates, extractable P, and total nitrogen were characterized both in the soils contaminated with mine residues and the biochar sample. A high concentration of sulfates, calcium, iron, and aluminum and a significant presence of Na, followed by minor amounts of Mg, K, Cu, and Mn, were observed in efflorescent salts. X-ray diffraction indicated a high presence of quartz and gypsum and the absence of pyrite and Schwertmannite in the efflorescent salt, while showing broad peaks belonging to graphene sheets in the biochar sample. Soil remediation was evaluated in Petri dish seed germination bioassays using Brachiaria decumbens . Biochar was shown to be effective in the improvement of pH, and positively influenced the germination percentage and root length of Brachiaria grass seeds.

Keywords: coal mine waste; amendments; efflorescent salts; biochar; germination bioassay (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/9/11/2100/pdf (application/pdf)
https://www.mdpi.com/2071-1050/9/11/2100/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:9:y:2017:i:11:p:2100-:d:118921

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2100-:d:118921