EconPapers    
Economics at your fingertips  
 

Temperature Estimation for Photovoltaic Array Using an Adaptive Neuro Fuzzy Inference System

A. Bassam, O. May Tzuc, M. Escalante Soberanis, L. J. Ricalde and B. Cruz
Additional contact information
A. Bassam: Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico
O. May Tzuc: Posgrado en Energías Renovables, Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico
M. Escalante Soberanis: Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico
L. J. Ricalde: Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico
B. Cruz: Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Apdo. Postal 150 Mérida, Yucatán, Mexico

Sustainability, 2017, vol. 9, issue 8, 1-16

Abstract: Module temperature is an important parameter of photovoltaic energy systems since their performance is affected by its variation. Several cooling controllers require a precise estimation of module temperature to reduce excessive heating and power losses. In this work, an adaptive neuro fuzzy inference system technique is developed for temperature estimation of photovoltaic systems. For the learning process, experimental measurements comprising six environmental variables (temperature, irradiance, wind velocity, wind direction, relative humidity, and atmospheric pressure) and one operational variable (photovoltaic power output) were used as training parameters. The proposed predictive model comprises a zero-order Sugeno neuro fuzzy system with two generalized bell-shaped membership functions per input and 128 fuzzy rules. The model is validated with experimental information from an instrumented photovoltaic system with a fitness correlation parameter of R = 95%. The obtained results indicate that the proposed methodology provides a reliable tool for estimation of modules temperature based on environmental variables. The developed algorithm can be implemented as part of a cooling control system of photovoltaic modules to reduce the efficiency losses.

Keywords: solar energy; temperature photovoltaic cell; photovoltaic performance; sensitivity analysis; artificial intelligence modeling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/2071-1050/9/8/1399/pdf (application/pdf)
https://www.mdpi.com/2071-1050/9/8/1399/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:9:y:2017:i:8:p:1399-:d:108384

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1399-:d:108384