Asymptotic and non asymptotic approximations for option valuation
Romain Bompis () and
Emmanuel Gobet ()
Additional contact information
Romain Bompis: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Emmanuel Gobet: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
We give a broad overview of approximation methods to derive analytical formulas for accurate and quick evaluation of option prices. We compare different approaches, from the theoretical point of view regarding the tools they require, and also from the numerical point of view regarding their performances. In the case of local volatility models with general time-dependency, we derive new formulas using the local volatility function at the mid-point between strike and spot: in general, our approximations outperform previous ones by Hagan and Henry-Labordère. We also provide approximations of the option delta.
Date: 2012
Note: View the original document on HAL open archive server: https://hal.science/hal-00720650v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Published in Thomas Gerstner and Peter Kloeden. Computational finance, World scientific, pp.80, 2012
Downloads: (external link)
https://hal.science/hal-00720650v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-00720650
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().