EconPapers    
Economics at your fingertips  
 

Pricing formulae for derivatives in insurance using the Malliavin calculus *

Caroline Hillairet, Ying Jiao and Anthony Réveillac ()
Additional contact information
Caroline Hillairet: ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris
Ying Jiao: LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon
Anthony Réveillac: INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse, IMT - Institut de Mathématiques de Toulouse UMR5219 - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: In this paper we provide a valuation formula for different classes of actuarial and financial contracts which depend on a general loss process, by using the Malliavin calculus. In analogy with the celebrated Black-Scholes formula, we aim at expressing the expected cash flow in terms of a building block. The former is related to the loss process which is a cumulated sum indexed by a doubly stochastic Poisson process of claims allowed to be dependent on the intensity and the jump times of the counting process. For example, in the context of Stop-Loss contracts the building block is given by the distribution function of the terminal cumulated loss, taken at the Value at Risk when computing the Expected Shortfall risk measure.

Date: 2018-06-05
New Economics Papers: this item is included in nep-ias and nep-rmg
Note: View the original document on HAL open archive server: https://hal.science/hal-01561987v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Published in Probability, Uncertainty and Quantitative Risk, 2018, 3 (7), pp.1-19

Downloads: (external link)
https://hal.science/hal-01561987v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-01561987

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-04-01
Handle: RePEc:hal:journl:hal-01561987