Multi-Directional Local Search for Sustainable Supply Chain Network Design
Majid Eskandarpour (),
Pierre Dejax and
Olivier Péton ()
Additional contact information
Pierre Dejax: LS2N - équipe SLP - Systèmes Logistiques et de Production - LS2N - Laboratoire des Sciences du Numérique de Nantes - UN UFR ST - Université de Nantes - UFR des Sciences et des Techniques - UN - Université de Nantes - ECN - École Centrale de Nantes - CNRS - Centre National de la Recherche Scientifique - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris], IMT Atlantique - DAPI - Département Automatique, Productique et Informatique - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris], LS2N - Laboratoire des Sciences du Numérique de Nantes - UN UFR ST - Université de Nantes - UFR des Sciences et des Techniques - UN - Université de Nantes - ECN - École Centrale de Nantes - CNRS - Centre National de la Recherche Scientifique - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris]
Olivier Péton: LS2N - équipe SLP - Systèmes Logistiques et de Production - LS2N - Laboratoire des Sciences du Numérique de Nantes - UN UFR ST - Université de Nantes - UFR des Sciences et des Techniques - UN - Université de Nantes - ECN - École Centrale de Nantes - CNRS - Centre National de la Recherche Scientifique - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris], IMT Atlantique - DAPI - Département Automatique, Productique et Informatique - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris], LS2N - Laboratoire des Sciences du Numérique de Nantes - UN UFR ST - Université de Nantes - UFR des Sciences et des Techniques - UN - Université de Nantes - ECN - École Centrale de Nantes - CNRS - Centre National de la Recherche Scientifique - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris]
Post-Print from HAL
Abstract:
In this paper, we propose a bi-objective MILP formulation to minimize logistics costs as well as CO 2 emissions in a supply chain network design problem with multiple layers of facilities, technology levels and transportation mode decisions. The proposed model aims at investigating the trade-off between cost and CO 2 emissions through supply chain activities (i.e., raw material supply, manufacturing, warehousing, and transportation). To this end, a multi-directional local search (MDLS) metaheuristic is developed. The proposed method provides a limited set of non-dominated solutions ranging from a purely cost effective solution to a purely environmentally effective one. Each iteration of the MDLS consists in performing local searches from all non-dominated solutions. To do so, a Large Neighborhood Search (LNS) algorihtm is used. Extensive experiments based on randomly generated instances of various sizes and features are described. Three classic performance measures are used to compare the set of non-dominated solutions obtained by the MDLS algorithm and by directly solving the MILP model with the epsilon-constraint approach. This paper is concluded by managerial insights about the impact of using greener technology on the supply chain * Corresponding author. Olivier Péton, IMT Atlantique,
Date: 2019-10
New Economics Papers: this item is included in nep-cmp and nep-env
Note: View the original document on HAL open archive server: https://hal.science/hal-02407741v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Published in International Journal of Production Research, 2019, ⟨10.1080/00207543.2019.1696488⟩
Downloads: (external link)
https://hal.science/hal-02407741v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02407741
DOI: 10.1080/00207543.2019.1696488
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().